MultiNet for OpenVMS
Programmer’s Reference

Part Number: N-5003-44-NN-A
December 2001

This manual documents the programmer’s interface to MultiNet, and isintended
to guide the programmer in devel oping applications that use network services.

Revision/Update: Thismanual supersedesthe MultiNet Programmers’ Reference,
V4.3

Operating System/Version: VAX/VMSV5.5-2 or later, OpenVMS VAX 6.0 or later,
and OpenVMS Alpha V6.1 or later

Software Version: MultiNet V4.4

Process Software
Framingham, Massachusetts
USA

The material in this document is for informational purposes only and is subject to change without notice. It
should not be construed as a commitment by Process Software. Process Software assumes no responsibility for
any errors that may appear in this document.

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS 252.227-7013.

The following third-party software may be included with your product and will be subject to the software license
agreement.

Network Time Protocol (NTP). Copyright © 1992 by David L. Mills. The University of Delaware makes no
representations about the suitability of this software for any purpose.

Point-to-Point Protocol. Copyright © 1989 by Carnegie-Mellon University. All rights reserved. The name of the
University may not be used to endorse or promote products derived from this software without specific prior
written permission. Redistribution and use in source and binary forms are permitted provided that the above
copyright notice and this paragraph are duplicated in all such forms and that any documentation, advertising
materials, and other materials related to such distribution and use acknowledge that the software was developed
by Carnegie Mellon University. The name of the University may not be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED AS

IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT

LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A

PARTICULAR PURPOSE.

RES_RANDOM.C. Copyright © 1997 by Niels Provos <provos@physnet.uni-hamburg.de> All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by Niels Provos.

4. The name of the author may not be used to endorse or promote products derived from this software without
specific prior written permission.

Copyright © 1990 by John Robert LoVerso. All rights reserved. Redistribution and use in source and binary
forms are permitted provided that the above copyright notice and this paragraph are duplicated in all such forms
and that any documentation, advertising materials, and other materials related to such distribution and use
acknowledge that the software was developed by John Robert LoVerso.

Kerberos. Copyright © 1989, DES.C and PCBC_ENCRYPT.C Copyright © 1985, 1986, 1987, 1988 by
Massachusetts Institute of Technology. Export of this software from the United States of America is assumed to
require a specific license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting. WITHIN THAT CONSTRAINT,
permission to use, copy, modify, and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that the name of M.L.T. not be used in
advertising or publicity pertaining to distribution of the software without specific, written prior permission.

M.L.T. makes no representations about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty.

DNSSIGNER (from BIND distribution) Portions Copyright (c) 1995-1998 by Trusted Information Systems, Inc.
Portions Copyright (c) 1998-1999 Network Associates, Inc.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby
granted, provided that the above copyright notice and this permission notice appear in all copies. THE

SOFTWARE IS PROVIDED "ASIS" AND TRUSTED INFORMATION SYSTEMS DISCLAIMS

ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL TRUSTED INFORMATION SYSTEMS
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

ERRWARN.C. Copyright © 1995 by RadioMail Corporation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions a
met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the follow
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of RadioMail Corporation, the Internet Software Consortium nor the names of its
contributors may be used to endorse or promote products derived from this software without specific prior
written permission. THIS SOFTWARE IS PROVIDED BY RADIOMAIL CORPORATION, THE INTERNET
SOFTWARE CONSORTIUM AND CONTRIBUTORS AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENT SHALL RADIOMAIL CORPORATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. This software was written for RadioMail Corporation by Ted Lemor
under a contract with Vixie Enterprises. Further modifications have been made for the Internet Software
Consortium under a contract with Vixie Laboratories.

IMAP4R1.C, MISC.C, RFC822.C, SMTP.C Original version Copyright © 1988 by The Leland Stanford Junic
University

ACCPORNAM technology Copyright (c) 1999 by Brian Schenkenberger - TMESIS SOFTWARE
NS_PARSER.C Copyright © 1984, 1989, 1990 by Bob Corbett and Richard Stallman

This program is free software. You can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 1, or (at your option) any later
version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details. You should have received a copy of the GNU Gener
Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139 USA

IF_ACP.C Copyright © 1985 and IF_DDA.C Copyright © 1986 by Advanced Computer Communications
IF_PPP.C Copyright © 1993 by Drew D. Perkins

ASCII_ADDR.C Copyright © 1994 Bell Communications Research, Inc. (Bellcore)

DEBUG.C Copyright © 1998 by Lou Bergandi. All Rights Reserved.

NTP_FILEGEN.C Copyright © 1992 by Rainer Pruy Friedrich-Alexander Universitaet Erlangen-Nuernberg

RANNY.C Copyright © 1988 by Rayan S. Zachariassen. All Rights Reserved.

MD5.C Copyright © 1990 by RSA Data Security, Inc. All Rights Reserved.
Portions Copyright © 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 by SRI International
Portions Copyright © 1984, 1989 by Free Software Foundation

Portions Copyright © 1993, 1994, 1995, 1996, 1997, 1998 by the University of Washington. Permission to use,
copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notices appear in all copies and that both the above copyright notices
and this permission notice appear in supporting documentation, and that the name of the University of
Washington or The Leland Stanford Junior University not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. This software is made available "as is",
and THE UNIVERSITY OF WASHINGTON AND THE LELAND STANFORD JUNIOR UNIVERSITY
DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE,

INCLUDING WITHOUT LIMITATION ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE, AND IN NO EVENT SHALL THE UNIVERSITY OF
WASHINGTON OR THE LELAND STANFORD JUNIOR UNIVERSITY BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, TORT (INCLUDING
NEGLIGENCE) OR STRICT LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Portions Copyright © 1980, 1982, 1985, 1986, 1988, 1989, 1990, 1993 by The Regents of the University of
California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement:

This product includes software developed by the University of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Portions Copyright © 1993 by Compaq Computer Corporation.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby
granted, provided that the above copyright notice and this permission notice appear in all copies, and that the
name of Compaq Computer Corporation not be used in advertising or publicity pertaining to distribution of the
document or software without specific, written prior permission. THE SOFTWARE IS PROVIDED "AS IS"
AND COMPAQ COMPUTER CORP. DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN

NO EVENT SHALL COMPAQ COMPUTER CORPORATION BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING

FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Portions Copyright © 1995 by International Business Machines, Inc.

International Business Machines, Inc. (hereinafter called IBM) grants permission under its copyrights to use
copy, modify, and distribute this Software with or without fee, provided that the above copyright notice and &
paragraphs of this notice appear in all copies, and that the name of IBM not be used in connection with the
marketing of any product incorporating the Software or modifications thereof, without specific, written prior
permission. To the extent it has a right to do so, IBM grants an immunity from suit under its patents, if any, f
the use, sale or manufacture of products to the extent that such products are used for performing Domain N
System dynamic updates in TCP/IP networks by means of the Software. No immunity is granted for any pro
per se or for any other function of any product. THE SOFTWARE IS PROVIDED "AS IS", AND IBM
DISCLAIMS ALL WARRANTIES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE,
EVEN IF IBM IS APPRISED OF THE POSSIBILITY OF SUCH DAMAGES.

Portions Copyright © 1995, 1996, 1997, 1998, 1999, 2000 by Internet Software Consortium. All Rights
Reserved. Permission to use, copy, modify, and distribute this software for any purpose with or without fee i
hereby granted, provided that the above copyright notice and this permission notice appear in all copies. Tt
SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM

BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (c) 1996-2000 Internet Software Consortium.

Use is subject to license terms which appear in the file named ISC-LICENSE that should have accompaniec
file when you received it. If a file named ISC-LICENSE did not accompany this file, or you are not sure the c
you have is correct, you may obtain an applicable copy of the licertggaiwww.isc.org/isc-license-1.0.html
This file is part of the ISC DHCP distribution. The documentation associated with this file is listed in the file
DOCUMENTATION, included in the top-level directory of this release. Support and other services are availa
for ISC products - selettp://www.isc.orgfor more information.

ISC LICENSE, Version 1.0

1. This license covers any file containing a statement following its copyright message indicating that it is
covered by this license. It also covers any text or binary file, executable, electronic or printed image that is
derived from a file that is covered by this license, or is a modified version of a file covered by this license,
whether such works exist now or in the future. Hereafter, such works will be referred to as "works covered k
this license," or "covered works."

2. Each source file covered by this license contains a sequence of text starting with the copyright message
ending with "Support and other services are available for ISC productstts#evww.isc.orgfor more
information." This will hereafter be referred to as the file's Bootstrap License.

3. If you take significant portions of any source file covered by this license and include those portions in sol
other file, then you must also copy the Bootstrap License into that other file, and that file becomes a covered
You may make a good-faith judgement as to where in this file the bootstrap license should appear.

4. The acronym "ISC", when used in this license or generally in the context of works covered by this licens
an abbreviation for the words "Internet Software Consortium."

5. A distribution, as referred to hereafter, is any file, collection of printed text, CD ROM, boxed set, or other
collection, physical or electronic, which can be distributed as a single object and which contains one or mor
works covered by this license.

6. You may make distributions containing covered files and provide copies of such distributions to whomev
you choose, with or without charge, as long as you obey the other terms of this license. Except as stated in
you may include as many or as few covered files as you choose in such distributions.

7. When making copies of covered works to distribute to others, you must not remove or alter the Bootstrap
License. You may not place your own copyright message, license, or similar statementsin the file prior to the
original copyright message or anywhere within the Bootstrap License. Object files and executable files are
exempt from the restrictions specified in this clause.

8. If the version of acovered sourcefile as you received it, when compiled, would normally produce executable
code that would print a copyright message followed by a message referring to an 1SC web page or other ISC
documentation, you may not modify the the file in such away that, when compiled, it no longer produces
executable code to print such a message.

9. Any source file covered by thislicense will specify within the Bootstrap License the name of the ISC
distribution from which it came, aswell as alist of associated documentation files. The associated
documentation for a binary file is the same as the associated documentation for the source file or files from
which it was derived. Associated documentation files contain human-readable documentation which the ISC
intends to accompany any distribution.

If you produce a distribution, then for every covered filein that distribution, you must include all of the
associated documentation files for that file. You need only include one copy of each such documentation filein
such distributions.

Absence of required documentation files from a distribution you receive or absence of the list of documentation
files from a source file covered by thislicense does not excuse you from this from this requirement. If the
distribution you receive does not contain these files, you must obtain them from the ISC and include them in any
redistribution of any work covered by thislicense. For information on how to obtain required documentation not
included with your distribution, see: http://wwuw.isc.org/getting-documentation.html .

If thelist of documentation files was removed from your copy of a covered work, you must obtain such alist
from the ISC. The web page at http://www.isc.org/getting-documentation.html contains pointers to lists of files
for each | SC distribution covered by thislicense.

It is permissible in a source or binary distribution containing covered works to include reformatted versions of
the documentation files. It is also permissible to add to or modify the documentation files, aslong as the
formatting issimilar in legibility, readability, font, and font size to other documentation in the derived product, as
long as any sections labeled CONTRIBUTIONS in these files are unchanged except with respect to formatting,
aslong asthe order in which the CONTRIBUTIONS section appearsin thesefilesis not changed, and as long as
the manual page which describes how to contribute to the Internet Software Consortium (hereafter referred to as
the Contributions Manual Page) is unchanged except with respect to formatting.

Documentation that has been translated into another natural language may be included in place of or in addition
to the required documentation, so long asthe CONTRIBUTIONS section and the Contributions Manual Page are
either left in their original language or translated into the new language with such care and diligence asis
required to preserve the original meaning.

10. You must include this license with any distribution that you make, in such away that it is clearly associated
with such covered works as are present in that distribution. In any electronic distribution, the license must bein
afilecalled "ISC-LICENSE".

If you make a distribution that contains works from more than one ISC distribution, you may either include a
copy of the |SC-LICENSE file that accompanied each such | SC distribution in such away that works covered by
each license are all clearly grouped with that license, or you may include the single copy of the ISC-LICENSE
that has the highest version number of all the ISC-LICENSE filesincluded with such distributions, in which case
all covered workswill be covered by that single license file. The version number of alicense appears at the top of
the file containing the text of that license, or if in printed form, at the top of thefirst page of that license.

11. If thelist of associated documentation isin a seperated file, you must include that file with any distribution
you make, in such away that the relationship between that file and the files that refer to it is clear. It isnot
permissible to merge such filesin the event that you make a distribution including files from more than one ISC
distribution, unless all the Bootstrap Licenses refer to files for their lists of associated documentation, and those

references al list the same filename.

12. If adistribution that includes covered works includes a mechanism for automatically installing covered
works, following that installation process must not cause the person following that processto violate this license,
knowingly or unknowingly. In the event that the producer of a distribution containing covered files accidentally
or wilfully violates this clause, persons other than the producer of such adistribution shall not be held liable for
such violations, but are not otherwise excused from any requirement of thislicense.

13. COVERED WORKS ARE PROVIDED "ASIS". ISC DISCLAIMSALL WARRANTIESWITH REGARD
TO COVERED WORKS INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

14. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OF COVERED WORKS.

Use of covered works under different termsis prohibited unless you have first obtained a license from 1SC
granting use pursuant to different terms. Such terms may be negotiated by contacting | SC as follows:

Internet Software Consortium

950 Charter Street

Redwood City, CA 94063

Tel: 1-888-868-1001 (toll freein U.S))
Tel: 1-650-779-7091

Fax: 1-650-779-7055

Email: info@isc.org

Email: licensing@isc.org

DNSSAFE LICENSE TERMS
This BIND software includes the DN Ssafe software from RSA Data Security, Inc., which is copyrighted
software that can only be distributed under the terms of thislicense agreement.

The DN Ssafe software cannot be used or distributed separately from the BIND software. You only have theright
to useit or distribute it as a bundled, integrated product.

The DNSsafe software can ONLY be used to provide authentication for resource records in the Domain Name
System, as specified in RFC 2065 and successors. You cannot modify the BIND software to use the

DNSsafe software for other purposes, or to make its cryptographic functions available to end-users for other
uses.

If you modify the DNSsafe software itself, you cannot modify its documented API, and you must grant RSA
Data Security the right to use, modify, and distribute your modifications, including the right to use
any patents or other intellectual property that your modifications depend upon.

You must not remove, alter, or destroy any of RSA’s copyright notices or license information. When distributing
the software to the Federal Government, it must be licensed to them as "commercial computer software”
protected under 48 CFR 12.212 of the FAR, or 48 CFR 227.7202.1 of the DFARS.

You must not violate United States export control laws by distributing the DN Ssafe software or information
about it, when such distribution is prohibited by law.

THE DNSSAFE SOFTWARE ISPROVIDED "ASIS' WITHOUT ANY WARRANTY WHATSOEVER. RSA
HASNO OBLIGATION TO SUPPORT, CORRECT, UPDATE OR MAINTAIN THE RSA SOFTWARE. RSA
DISCLAIMS ALL WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, ASTO ANY MATTER

WHATSOEVER, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESSFOR A

PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
If you desire to use DNSsafe in ways that these terms do not permit, please contact:

RSA Data Security, Inc.

100 Marine Parkway

Redwood City, California 94065, USA
to discuss alternate licensing arrangements.

Secure Shell (SSH). Copyright © 2000. This License agreement, including the Exhibits (“Agreement”),
effective as of the latter date of execution (“Effective Date”), is hereby made by and between Data Fellows, Inc.,
a California corporation, having principal offices at 675 N. First Street, 8th floor, San Jose, CA 95112170 (“Data
Fellows”) and Process Software, Inc., a Massachusetts corporation, having a place of business at 959 Concord
Street, Framingham, MA 01701 (“OEM").

All other trademarks, service marks, registered trademarks, or registered service marks mentioned in this
document are the property of their respective holders.

MultiNet is a registered trademark and Process Software and the Process Software logo are trademarks of
Process Software.

Copyright ©1997, 1998, 1999, 2000 Process Software Corporation. All rights reserved. Printed in USA.
Copyright ©2000, 2001 Process Software, LLC. All rights reserved. Printed in USA.

If the examples of URLs, domain names, internet addresses, and web sites we use in this documentation reflect
any that actually exist, it is not intentional and should not to be considered an endorsement, approval, or

recommendation of the actual site, or any products or services located at any such site by Process Software. Any
resemblance or duplication is strictly coincidental.

Contents

Preface
PUIPOSE Of thiS GUITE........ceiieieesiiecie e e r s sne e stesneneenaeneens XV
DOCUMENE SLIUCKUIE ...ttt sttt st sttt st st ne e XV
ODbtaiNiNg CUSLOMEr SUPPOITeiuereruieieriesiesie st see et se e e esessesesbesbesaesaesbesbeseesenseseeneensnseeneans Xvi
Before Contacting CUSLOMEr SUPPOITcverireeererie sttt e ee e be s e b see e se e XVi
Sending EIECIrONIC Ma@iloouiiiieeee et e et XVii
Calling CUSLOMEr SUPPOITcuveeeeeeeierereeetestesiestesteseeseeseseeseessesessesseesessessessessessessessensensnsensesennes XViii
Contacting Customer SUPPOIt BY FaX.........ovvierirerererereerecre s XViii
(® o1 r= o TH 1o @ o1 1T T= [1 o TS XViii
MultiNet Frequently Asked QUESLIONS LIStcccoiiiriirenierieieeeeee et XViii
Accessing the MultiNet PUblic Mailing LiStcoooiiiieiieeieeeene e XViii
Process Software World Wide WED SEIVES ... s Xix
Obtaining Software Patches Over the INLEINELccovveeeveececece e XiX
TypographiCal CONVENLIONScccuiieeie ettt s a e e e e e enesreneenns XX
L1 7= 1 o XXi
DocUMENEELiON COMIMENTS ...ttt sttt e et se e aesbe st bt sbe b sae b e be e e e enee e anesnens XXi

Chapter 1 MultiNet Programming Tutorial

SOCKELS.... ettt et et et e st et e R e e b e bR bR bRt R e e b e et e et e e 11
TP ClIENE 1.ttt ettt se et se et e s ae b e s eeb e st etesbe e st et ss e e st e e et e e ete e ntenentenensaneas 1-3
TICOP SEIVE ..ttt sttt h bRt bR SR s Rt R e et R e e R Rt R Rt R R e e nen e e e eneenens 1-4
L6 TP 1-4
BSD-SPECIHTIC TIPS cvruveutereeeeererieeseeesesestesteseeseesteseesseseeseesesseesessessessessessessensensesenseensnsesnsssessensessnns 1-5

BSD SOCKELS POrtiNG NOLE......eueviieierieeeie et se e e sresresne e reneenennes 1-5

BSD 4.3 TCP/IP Future Compatibility ConSiderations............cceveerereereeernesesiesieseeseeseeseens 1-5

Contents

Chapter 2 Socket Library Functions
A ST REENITANCY ...eouveieeiesteeeeeeeste et e st st e sesee s e s te e eseessesseesseaneesseesesseeseesaeensesseensesseensensenneesseenees 2-1

Chapter 3 $QIO Interface

Chapter 4 SNMP Extensible Agent APl Routines

REGUITEIMENES. ...ttt e eea et a e a e b e s ae b eb e e s e e e et et e seene et e ne e st sbeeaene 4-2
Linking the EXteNsion AQENt IMEOE........ccoviiiiieees e sees ettt sre e s 4-2
Installing the EXteNSioN AQENt IMBOEcoe ittt st s e 4-3
= o180 o1 1o [o L= 4-3
SUDFOULINE REFEIBNCE ..ottt et ettt b e sbesb e b e be b sreneas 4-3

Chapter 5 RPC Fundamentals

T g (8ot [o OSSR 5-1
What ATE RPC SEIVICES? ...ttt sttt ee st e e st beeae bt s b et e s bese et et e see e et eaebees 51
MUItINEL IMPIEMENEALIONecviieecee et ere e resresresnesrenrnnens 5-1
DTES (] oU11= o J7AN o] o] [Tox= (0] TSP R 51
ComPONENES Of RPC SEIVICEScoueiuiitirieriintistesie ettt be st bbb e e sbe e e e e e e s ese e e snesseeas 5-2
RUN-TIME LiDrarieS (RTLS) ...coceeeereeiietieie sttt st sbe st s st e e se e snesbesae e 5-2
RPCGEN COMPIEN ...t cieste et stese e s et e et te et saeseese e e e e e e esessensesneesessensnseenses 52
0 AV o] o = S 5-2
RPC INFOMMBLION ...ttt st st bbb ettt 5-3
Client-Server REIAHTONSNIPcuoeeiieireeere et b e sbe bbb st e e e e e e e ssenas 5-3
External Data Representation (XDR)ccvieiirecieriece s st e et se e sneseesnesnens 5-3
RPC ProCeSSING FIOW ...ttt sttt b st b e e e et se et b ebenbe e 5-3
Local Calls Versus REMOLE CallS ..ot 5-4
HaNdling SYStEM CrashiS........ccouiieiieeieieieete ettt sttt be s bt sbe st e e sbesee e e e e neebe s e ene s 5-4
[F= 00 [T a0 I o TR 5-4
Call SEMANTICS....cceeteieetee ettt bttt et e e e e e b e e e bt eh e b e s b sbeebesbesbeeenesbeeneee 5-5
Programming INEEITACE.uieieriees et e e e re e 55
High-LeVEl ROULINEScouiiiieiieie ettt sttt st bbb et ne e ene s 55
Mid-LEVE ROULINES......ccueiuiieetieiiete ettt ettt st e st et eae st be s s ebesbesbesrennas 55
LOW-LEVEI ROULINES ..ottt sttt ettt s b st se b e e e et eneeneene s 5-6
QLI oo (][] R 5-6
D 2 O TSP 5-7
100 0] g1 ST 5-7

Contents

CACNE SIZE....eee ettt ettt sttt et e b et e e ba et e ehe e s besae e she et e beeabebe e e e ebeeaeenaesaeesas 5-7
EXECULION GUBIANTEEScccteeiiieiitiectee et e etee ettt e et e e be e e eteeebeesabesbeesaeeesbeesasesabeebeesnseesbeesnseenseennes 57
ENabling XID CaCRE........cooiiiie e b e e b s s aeneas 5-8
BrOBOCASt RPC........ccviitieee ittt ettt st sttt ebe et e ae e e besaeebesatesbeeneesbeebeesbesatesbesnbensesneensesns 5-8
I dentifying Remote Programs and PrOCEAUIEScooiereiereciiie et 5-8
Remote Program NUMDEIS. ... et en 5-8
REMOLE VEISION NUMDBEIS......cueiiicee ettt et et sre e s e et st e e be et e eneereenns 5-9
REMOLE ProCedUre NUMDETS........ccveiiiee ettt sttt sttt sre e sae s sne s e enbesbe e besbaenneereenns 5-9
Yo (o 10 = I =T RO RTORRP 59

Chapter 6 Building Distributed Applicationswith RPC

g T (8ot [o OSSPSR 6-1
Distributed Application COMPONENTScoiiiireeierieeeeeerte st ere et se e se e e e sae s seesaeseeseens 6-1
What YOU NEEA L0 D0....c.ccviiieieeie ettt et st st st s s s ene e 6-1
Step 1: Design the APPIICELIONcc.eeiieeiee et et sb e s sb e b e b eneeas 6-2
Step 2: Write and Compile the Interface DEfiNitioNcoccvevereceve s 6-2
Step 3: Write the NeCESSarY COUEooviiiireeireeirie e st b e bbb b seeas 6-3
StEP 4: COMPIHE AL FIlES ...ttt e st er e e saesreneenens 6-3
Step 5: Link the OBJECE COUE.......cocouiieerieieitisieie ettt e b s nesneaas 6-3
SteP 6: Start the POt MaDPENccveeeeeeeeece et re et se e e e e enens 6-3
Step 7: Execute the Client and SErver ProgramsS.... ... see s seeneas 6-4
(©o]7= 1o THaTo Jl={ = O3 151101 117= 1 o o 6-4

Requesting a Program LiStiNg........coooo et s sn s 6-4

Chapter 7 RPCGEN Compiler

g1 T [0t [o TSRO 7-1
WAHEL ISRPCGENT?cooiictiseie ettt sttt sa et bese bt be st besesbesesbesaeteseesesaesesaesenneseeas 7-1
SOftWAre REQUITEIMENES. ... c.viieeieieeeeee et s e sttt se e e e s seenesse e e sressesaeseestesteseeneenseseeneeneenersen 7-1
1oL T ST 7-2
(O 0 11011 | B 1 =S 7-3
PreproCESSOr DITECHIVEScc.eiuiiirteeie ettt sttt st sb e b e e bt e e et et e b e e e besb e besaesbesenbe e e 7-3
INVOKING RPCGENciieieieeceetise st et esaeste e st et e e e e e seeneesesseenesresesnenrenneens 7-4
Creating All OULPUL FIlES @ ONCEecvieeeeeciesie sttt st s e e ene s 7-4
Creating SPeCific OQULPUL FITES.......ccuiieerecece e s 7-4
= 001 0SSPSO 7-5
Creating Server Stubsfor TCP or UDP TranSpOrtS.......cccceeeeiereine e esieseseesresie e e 7-5
o gl =0T [T T PP 7-6

Xi

Contents

[TS o1 o] 7-6

Chapter 8 RPC RTL Management Routines

(oo [F o oo 8-1
MaNagEMENt ROULINES.......ccueeeirieeiie e s e s se s e e s ere s tesreste b e seesten e seeneentes e e e s seesensessenseeneens 8-1
RoUtiNE NamME CONVENLIONS........cciciieiiieeieeiee et et et e s e e sresaeesaesaeesresseeste e e e sreeseesreensesreensannns 8-1
=T L= =SS 81
MaNagEMENE ROULINES.......ccueeeireeeiree s e s se s e s ere s ete s tesreseesten e seereenees e e e nseenensesnenreeneans 8-2

Chapter 9 RPC RTL Client Routines

(1910070 (8 (011 o] TR 9-1
COMIMON ATGUIMENTSeveeieeeiesteeiesteeseesseeesseeeesseessesseeseesseessesssenseeseessesseessssneessesnsessesseessensensnness 9-1
ClIENE ROULINES. ...ttt ettt e e et e s st e e s st e e s bt e s s saaaessabeessbtessasaeessabeesesbesssassasssrenessstenesnns 9-2

Chapter 10 RPC RTL Port Mapper Routines

g1 T (8ot (o OO 10-1
POIt MapPEr ROULINES........coiiiiie ittt sttt sttt ettt eae et st ae b e e b e 10-1
PO MaPPEr ATQUIMENTSeeeieeieieeieesteeeeseeeeeeeeeseesseeseesesseesees e sseestesseeseesssenssensessessesssessensensnsens 10-1

Chapter 11 RPC RTL Server Routines
910070 (8 (011 1) IR 11-1
TS RV G (0 V111 1= 11-1

Chapter 12 RPC RTL XDR Routines

11100 [0 Tex 110] o [OOSR USRS 12-1
XDR ROULINEScvviitieeiitieiee st etee st ete st et et e e beebeeaeesbesasesbesabesbeebesbeeseeshesssesbeenbenbeenbesseensessbenseenns 12-1
What XDR ROULINES DO.......ccouiiieiieeiieiteeiee sttt et et este e e seesaesaeseesbesbeesbesseessesssensesnsessessessanns 12-1
When t0 Call XDR ROULINES........ccoiitieetiiiiete et see sttt st steebesbeeseeeresnesneessesbeesaesneeseessnens 12-2
(O U1 [(= = o= 12-2
D TT= | 0 o= R 12-13

Appendix A Example TCP Client Program

Xii

Contents

Appendix B Example TCP Server Programs

SEANAAIONE TCP SEIVEY ... vttt ettt ete s s s st eebe s sa b e s sbessabe s sbessseeeabesseesabessabesbessreessris B-1
TCP Server as Part of the MULTINET_SERVER ..ot B-4

Appendix C Example UDP Client Program

Appendix D Example UDP Server Programs

StANABIONE UDP SEIVESc.viveie ettt sttt seese s sresaesaestestese e tesaenaeneenensensenes D-1
UDP Server as Part of the MULTINET_SERVER......cccoiiiinseree e D-3
Run-Once UDP Server as Part of the MULTINET_SERVER........ccccciiviveie e D-7

Index

Reader’'s Comments

Xiii

Preface

Purpose of this Guide

This guide describes the programming interfaces provided with the MultiNet software: A socket
library based on the UNIX 4.3BSD system calls, and an OpenVMS $QI O interface. All socket
functions documented in this guide are available in the shareable image
MULTINET:MULTINET_SOCKET_LIBRARY.EXE, included in the standard MultiNet
distribution. The include files and example programs are part of the optional MultiNet
Programmers Kit, and should be installed as described in the Installation and Administrator’s
Guidebefore using the programming interface.

If you are writing socket programs in C, Process Software recommends that you use the Compaq C
include files for the socket definitions. Your program will then use the TCP/IP Services for VMS-
emulation interface in TCPware and MultiNet. The MultiNet header files have been updated to work
with more current versions of Compaq C. The MultiNet files should be used only if you are planning
to use the MultiNet INETDRIVER API explicitly.

Document Structure
Read this guide to perform the following tasks:

* Chapter 1, IP Programming Tutorial, to write clients and servers that access the network.

* Chapter 2, Socket Library Functions, to view detailed information about socket library
functions.

¢ Chapter 3, $QIO Interface, to view detailed information about SY S$QI O calls that you can use
to access the network.

* Chapter 4, SNMP Extensible Agent API Routines.

® Chapter 5, RPC Fundamentals, explains RPC.

¢ Chapter 6, Building Distributed Applications With RPC, explains what components a distributed
application contains, how to use RPC to devel op a distributed application, step-by-step, and how
to get RPC information.

* Chapter 7, RPCGEN Compiler, explains the RPC compiler.

* Chapter 8, RPC RTL Management Routines.

* Chapter 9, RPC RTL Client Routines.

XV

Preface

¢ Chapter 10, RPC RTL Port Mapper Routines.
¢ Chapter 11, RPC RTL Server Routines.

* Chapter 12, RPC RTL XDR Routines.

¢ Appendix A, Example TCP Client Routines.
¢ Appendix B, Example TCP Server Routines.
* Appendix C, Example UDP Client Routines.
¢ Appendix D, Example UDP Server Routines.

This Preface also contains more information in the next sections about getting help directly from
Process Software Customer Support.

Obtaining Customer Support

Process Software provides customer support if you have a current Maintenance Service Agreement.
If you obtained MultiNet from an authorized distributor or partner, you receive your customer
support directly from them.

You can contact Customer Support by:

* Sending electronic mail (see the section Sending Electronic Mail).

¢ Caling the Customer Support Specialist (see the section Calling Customer Support).

* Fax adescription of your problem to the Customer Support Group (see the section Contacting
Customer Support by Fax).

Before Contacting Customer Support

XVi

Before you call, or send e-mail or afax, please:

1 Verify that your Maintenance Service Agreement is current.

2 Read the online Release Notes, available either in BookReader format or in
SYS$HELP:MULTINETNNn. RELEASE_NOTES (nnn) is the current MultiNet software
version installed on your system.

3 Havethefollowing information available:

¢ Your name

* Your company hame

* Your e-mail address

* Your voice and fax telephone numbers
* Your Maintenance Agreement Number
* OpenVMS architecture

* OpenVMSversion

¢ MultiNet layered products and versions

4 Have complete information about your configuration, error messages that appeared, and problem
specifics.

Preface

5 Beprepared to let an engineer connect to your system either with TELNET or by dialing in using
amodem. Be prepared to give the engineer access to a privileged account to diagnose your
problem.

You can obtain information about your OpenVMS architecture, OpenVMS version, MultiNet
version, and layered products with the MULTINET SHOW /LICENSE command. For example:

$ MULTI NET SHOW/ LI CENSE
Process Software Multi Net V4.4, VAXstation 4000-90, OpenVMS VAX V7.1

In this example:

¢ The machine or system architectureis VAX.
* TheOpenVMSversionisV7.1.
* TheMultiNet versionisV4.4.

You can use the following table as a template to record the relevant information about your system.

Required Information Your System Information

Your name

Company name

Your e-mail address

Your voice and fax telephone numbers
System architecture VAX | Alpha
OpenVMS version

MultiNet version

MultiNet optional software components:

- MultiNet NFS Client Installed? Yes | No
- MultiNet NFS Server Installed? Yes | No
- MultiNet Secure/IP Client Installed? Yes | No
- MultiNet Secure/IP Server Installed? Yes | No
- TCP/IP applications Installed? Yes | No
- Online documentation Installed? Yes | No
- MultiNet Programmer’s Kit Installed? Yes | No

Sending Electronic Mail

For many questions, electronic mail isthe preferred communication method. Customer support via
electronic mail is available to customers with a current support contract. Send el ectronic mail to
support@process.com

At the beginning of your mail message, include the information listed in the section Before
Contacting Customer Support. Continue with the description of your situation and problem
specifics. Include all relevant information to help your Customer Support Specialist process and
track your electronic support request.

Electronic mail is answered Monday through Thursday from 8:30 am. to 7:00 p.m., and on Friday

Xvii

Preface

from 8:30 am. to 5:00 p.m. United States Eastern Time.

Calling Customer Support

For regular support issues, call 800-394-8700 or 508-628-5074 for support Monday through
Thursday from 8:30 am. to 7:00 p.m., and on Friday from 8:30 am. to 5:00 p.m. United States
Eastern Time.

For our customersin North Americawith critical problems, an option for support 7 days per week,
24 hours per day isavailable at an additional charge. Please contact your account representative for
further details.

Before calling, have avail able the information described in Before Contacting Customer Support.
When you call, you will be connected to a Customer Support Specialist.

Be prepared to discuss problem specifics with your Customer Support Specialist and to let that
person connect to your system.

If a Specialist is not available immediately, your call will be returned as soon as possible.

Contacting Customer Support by Fax
You can send fax transmissions directly to Customer Support at 508-879-0042.
Before faxing comments or questions, complete the stepsin Before Contacting Customer Support
and include all your system information at the beginning of your fax message. Continue with the

description of your situation and problem specifics. Include all relevant information to help your
Customer Support Specialist process and track your fax support request.

Faxed questions are answered M onday through Thursday from 8:30 am. to 7:00 p.m., and on
Friday from 8:30 am. to 5:00 p.m. United States Eastern Time.

Obtaining Online Help

Extensive information about MultiNet is provided in the MultiNet help library. For more
information, use the following command:

$ HELP MULTI NET

MultiNet Frequently Asked Questions List

You can obtain an updated list of frequently asked questions (FAQs) and answers about MultiNet
products from the Process Software home page located at http://www.support.process.com/
multinet.html.

Accessing the MultiNet Public Mailing List
Process Software maintains two public mailing lists for MultiNet customers:

¢ Info-MultiNet@process.com
* MultiNet-Announce@pr ocess.com

Xviii

Preface

The Info-MultiNet @process.com mailing list is aforum for discussion among MultiNet system
managers and programmers. Questions and problems regarding MultiNet can be posted for a

response by any of the subscribers. To subscribe to Info-MultiNet, send a mail message with the

word “SUBSCRIBE” in the body to Info-MultiNet-request@process.com. The information
exchanged over Info-MultiNet is also available via the USENET newsgroup vmsnet.networks.t
ip.multinet.

You can retrieve the Info-MultiNet archives by anonymous FTP to ftp.multinet.process.com. Tt
archives are located in the directory [INFO-MULTINET].

You can also find the Info-MultiNet archives on the MultiNet consolidated CD-ROM in the
[CONTRIBUTED-SOFTWARE.LIST-ARCHIVES.INFO-MULTINET] directory.

The M ultiNet-Announce@process.com mailing list is a one-way communication (from Process
Software to you) used for the posting of announcements relating to MultiNet (patch releases,
product releases, etc.). To subscribe to MultiNet-Announce, send a mail message with the wo
“SUBSCRIBE” in the body to MultiNet-Announce-request@process.com.

Process Software World Wide Web Server

Electronic support is provided through the Process Software World Wide Web server, which yc
can access with any World Wide Web browser; the URIttis://www.process.com (select
Customer Support).

Obtaining Software Patches Over the Internet

Process Software provides software patches in save set and ZIP format on its anonymous FT
server, ftp.multinet.process.com. For the location of software patches, read the .WELCOME fil
the top-level anonymous directory. This file refers you to the directories containing software
patches.

To retrieve a software patch, enter the following commands:

$ MULTI NET FTP / USERNAME=ANONYMOUS/ PASSWORD=" enai | addr ess"

FTP. MULTI NET. PROCESS. COM

A message welcoming you to the Process Software FTP directory appears next followed by th
FTP prompt. Enter the following at the prompts:

FTP. MULTI NET. PROCESS. COW>

CD [CUSTOVER _SUPPORT. SOFTWARE, UPDATES_VMS. Vnn]

FTP.MULTINET.PROCESS.COMSET update filename

* emailaddressisyour e-mail address in the standard user @host format.

* nnistheversion of MultiNet you want to transfer.
¢ update_filename is the name of the file you want to transfer.

To transfer files from Process Software directly to an OpenVMS system, you can use the GET
command without any other FTP commands. However, if you need to transfer a software patch
through an intermediate non-OpenV M S system, use BINARY mode to transfer the files to and

Xix

Preface

from that system.

In addition, if you are fetching the software patch in save set format, make sure the save set record
size is 2048 bytes when you transfer the file from the intermediate system to your OpenVMS
system:

¢ |f you use the GET command to download the file from the intermediate system, use the FTP
RECORD-SI ZE 2048 command before transferring the file.

¢ |f you use the PUT command to upload the file to your OpenVMS system, log into the
intermediate system and use the FTP quote site rms recsize 2048 command before transferring
thefile.

Process Software also supplies UNZIP utilities for OpenVMS VAX and Alpha for decompressing
ZIParchivesinthe[THIRD_PARTY_TOOLS.VMS] directory. To use ZIP format kits, you need a
copy of the UNZIP utility.

The following example shows how to use the UNZIP utility, assuming you have copied the
appropriate version of UNZIPEXE to your current default directory.

$ UNZI P : = SYSDI SK: [] UNzI P. EXE
$ UNZIP filenane.ZI P

Use VMSINSTAL to upgrade your MultiNet system with the software patch.

Typographical Conventions
Examples in this guide use the following conventions:

Convention Example Meaning

Bold text YES Represents user input in instructions or examples.
Bold, uppercase RETURN Represents a key on your keyboard.

Courier text

Bold Courier textwith | Ctrl/A Indicates that you holddown the key labeled
adash Control orCtrl while simultaneously pressing

another key; in this example, the "A" key.

A vertical bar within { ON|OFF} | Indicatesalist of values permitted in commands.
braces The vertical bar separates alternatives; do not type
the vertical bar in the actual command.

Italicized text file_name Represents a variable or placeholder; introduces
new terminology or concepts; emphasizes
something important; represents the title of a book
or publication.

XX

Preface

Convention Example Meaning

Square brackets [FULL] Indicates optional choices; you can enter none of
the choices, or as many asyou like. When shown as
part of an example, square brackets are actual
characters you should type.

Underscore or hyphen | file_ name or Between wordsin commands, indicatestheitemisa
file- name single element.

Further Reading
The following references contain additional information about programming under TCP/IP. They
may be useful in learning more about socket programming. Additional titles of recommended
books can be displayed using this command:
$ HELP MULTI NET BOOKS

Comer, Douglas. Internetworking with TCP/IP: Principles, Protocols, and Architecture,
Englewood Cliffs, NJ: Prentice-Hall, 1988.

Curry, Donald A. Using C on the UNIX System, O'Reilly and Associates. 1-800-338-NUTS.

Harspool, R. Nigel. C Programming in the Berkeley Unix Environment, Toronto, Canada: Prentice-
Hall, 1986.

Kochan, Stephen G. and Patrick K. Wood, editors. UNIX Networking, Indianapolis, IN: Hatden
Books, 1989.

Leffler, Samuel J., Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman. The
Design and Implementation of the 4.3BSD UNIX Operating System, Reading, MA: Addison-
Wesley, 1989.

UNIX Programming Manuals, U. C. Berkeley.

Documentation Comments

Your comments about the information in this guide can help us improve the documentation. If you
have corrections or suggestions for improvement, please let us know.

Be as specific as possible about your comments: include the exact title of the document, version,
date, and page references as appropriate.

You can send your comments by e-mail to: techpubs@process.com or mail the completed form to:

Process Software

959 Concord Street
Framingham, MA 01701-4682
Attention: Marketing Manager

You can also fax the form to us at 508-879-0042.
Your comments about our documentation are appreciated.

XXi

PART | MultiNet Programmer’s Reference

Chapter 1 MultiNet Programming Tutorial
Chapter 2 Socket Library Functions

Chapter 3 $QIO Interface

Chapter 4 SNMP Extensible Agent APl Routines

Chapter 1

MultiNet Programming Tutorial

This chapter contains short tutorials on various aspects of application programming using
MultiNet.

Once you haveinstalled the MultiNet Programmers’ Kit, you will find a number of example
programs in the appendices in this guide and in the directory
MULTINET_ROOT:[MULTINET.EXAMPLES]. The following tutorials, together with the
example programs, are designed to get you started as an application programmer using MultiNet.

Sockets

A socket isan endpoint for communication. Two cooperating sockets, one on the local host and one
on the remote host, form a connection. Each of the two sockets has a unique address that is
described generically by the 16-byte sockaddr C programming language structure. The sockaddr
structure is defined as follows:

struct sockaddr {

u_short sa_famly; /* address famly */

char sa_data[14]; [/* up to 14 bytes */
b
The sa_family field specifies the address family for the communications domain to which the
socket belongs. For example, it can be the constant AF_INET for the Internet family or the
constant AF_CHAOS for CHAOSnet addresses. The sa_data field contains up to 14 bytes of data,
the interpretation of which depends on the value of sa_family.

If thesa family field is AF_INET, the same 16- byte sockaddr structure can also beinterpreted asa
sockaddr _in structure that describes an Internet address. A sockaddr _in structure is defined as
follows:

struct sockaddr_in {
short sin_famly;
u_short sin_port;
struct in_addr sin_addr;

1-1

MultiNet Programming Tutorial

1-2

char sin_zero[8];
H
The sin_family field specifies the address family AF_INET. The sin_port field specifies the TCP
(Transmission Control Protocol) or UDP (User Datagram Protocol) port number of the address.
Whether the communication uses TCP or UDP is not determined here, but rather by the type of
socket created with the socket() call: SOCK_STREAM for TCP or SOCK_DGRAM for UDP.
The sin_addr field specifies the Internet address. The sin_zero field must be zero. Both the
sin_port field and the sin_addr field are in network byte order. See the htons() and htonl()
functions in Chapter 3 for further information about network byte ordering.

The sockaddr and sockaddr _in structures serve as input and output to a number of library
routines. For example, they may be used as input, specifying the address to which to make a
connection or send a packet, or as output, reporting the address from which a connection was made
or a packet transmitted.

Internet addresses are normally manipulated with the gethostbyname(), gethostbyaddr (),
inet_addr(), and inet_ntoa() functions. gethostbyname() and inet_addr () convert a host name or
ASCII representation of an address into the binary representation for the sockaddr _in structure.
gethostbyaddr () and inet_ntoa() are used to convert the binary representation into the host name
or ASCII representation for display.

Port numbers are normally manipulated with the getser vbyname() and getser vbyport() functions.
getservbyname() converts the ASCII service name to the numeric value, and getser vbyport()
converts the numeric value to the ASCII name.

The following example shows atypical program that converts the Internet address and the port into
binary representations.

#include "mul tinet _root:[nultinet.include.sys]types.h"
#include "multinet_root:[multinet.include.sys]socket.h"
#include "mul tinet_root:[nultinet.include]netdb.h"
#include "multinet _root:[multinet.include.netinet]in.h"

mai n(argc, ar gv)

int argc;

char *argv[];

{
struct sockaddr_in sin;
struct hostent *hp;
struct servent *sp;

/* Zero the sin structure to initialize it */

bzero((char *) &sin, sizeof(sin));
sin.sin_fanmly = AF_I NET;

/* Lookup the host and initialize sin_addr */

hp = get host bynane(argv[1]);

MultiNet Programming Tutorial

if ('hp) { /* Perhaps it is an ASCI| string */
sin.sin_addr.s_addr = inet_addr(argv[1]);
if (sin.sin_addr.s_addr == -1) {
printf("syntax error in |IP address\n");
exit(1l);
}
} else { /* Extract the I P address */

bcopy(hp->h_addr, (char *) &sin.sin_addr,
hp->h_Il engt h);
}

/* Lookup up the nane of the SMIP service */

sp = getservbynane("sntp","tcp");

if (!'sp) {
printf("unable to find sntp service");
exit(1);

}

sin.sin_port = sp->s_port;

/* Now we are ready to create a socket and
pass the address of this sockaddr_in
structure to the connect() call to

connect to the renote SMIP port */

}

TCP Client

A TCP client process establishes a connection to a server and uses the socket_read() and socket_
write() functions to transfer data. Typically, you use the following sequence of functionsto set up
the connection:

1 CreateaTCPsocket: socket (AF_I NET, SOCK _STREAM 0);

2 Set up asockaddr_in structure with the address you want to connect to by calling
gethostbyname() and getser vbyname().

3 Make a connection to the server with the connect() function.
4 Once connect() completes, the TCP connection is established and you can use socket_read()
and socket_write() to transfer data.

Refer to the sample program TCPECHOCLIENT.C in Appendix A and in the MultiNet
Programmers' Kit examples directory. This program sends datato a server and displays what the
server sends back.

1-3

MultiNet Programming Tutorial

TCP Server

A TCP server process binds a socket to awell-known port and listens on that port for connection
attempts. When a connection arrives, the server processesit by transferring data using
socket_read() and socket_write(). Typically, you use the following sequence of functionsto set up
aserver:

1 Createa TCPsocket: socket (AF_I NET, SOCK_STREAM 0);

2 Usethe getservbyname() function to get the port number of the service on which you want to
listen for connections.

3 Setupasockaddr_in structure with the port number and an Internet address of INADDR_ANY,
and bind this address to the socket with the bind() function.

4 Usethelisten() function to inform the MultiNet kernel that you are listening for connections on
this socket. Then wait for aconnection and accept it with accept().

5 Once accept() completes, the TCP connection is established and you can use socket_read() and
socket_write() to transfer data. When you are done with the connection, you can close the
channel returned by accept() and start a new accept() call on the original channel to wait for
another connection.

Note! When writing a TCP server that will run under the control of the MultiNet_Server process, you

must assign a channel to SYS$INPUT before calling any of the VAX C 1/O routines.

Refer to the sample program TCPECHOSERVER-STANDALONE.C in Appendix B and in the
MultiNet Programmers' Kit examples directory for an example of aserver program that echoes data
sent to it.

Another way to writea TCP server isto let the MULTINET _SERVER process do the work for
you. The MULTINET_SERVER can perform all of the above steps, and when a connection request
arrives, can use the OpenVM S system service SCREPRC to create a process running your
program. Refer to the sample program TCPECHOSERVER.C in Appendix B and in the MultiNet
Programmers' Kit examples directory for an example of how thisis done.

UDP

1-4

A UDP program sends and receives packets to and from a remote port using the send() or sendto()
and recv() or recvfrom() functions. UDP is a connectionless transport protocol. It does not incur
the overhead of creating and maintaining a connection between two sockets, but rather merely
sends and receives datagrams. It is not a reliable transport, and does not provide guaranteed data
delivery, packet ordering, or flow control.

Typically, you use the following sequence of functionsin a UDP program:

1 CreateaUDP socket: socket (AF_I NET, SOCK DGRAM 0);

MultiNet Programming Tutorial

2 Bind the socket to alocal port number with the bind() function. Specify thesin_port field as 0
(zero) if you want MultiNet to choose an unused port number for you automatically (typical of a
client), or specify thesin_port field as the UDP port number (typical of aserver). Thesin_addr
field is usually specified as INADDR_ANY, which means that packets addressed to any of the
host’s Internet addresses are accepted.

3 Optionally, use connect() to specify the remote port and Internet address. If you do not use
connect(), you must use sendto() to specify the remote address when you send packets, and
recvfrom() to learn the address when you receive them.

4 Read and write packets to transfer data using the send() or sendto() and recv() or recvfrom()
functions, respectively.

Note! When writing a UDP server that will run under the control of the MultiNet_Server process, you
must assign a channel to SYS$INPUT before calling any of the VAX C I/O routines.

Another way to write a UDP server isto let the MULTINET _SERVER process handle the work.
The MULTINET_SERVER can perform all the above steps, and when a packet arrives on a UDP
port, can use the OpenVMS system service $CREPRC to create a process running your program.
Refer to the sample programs in Appendix C, Appendix D, and in the MultiNet Programmers’ Kit
examples directory for examples of UDP clients and servers.

BSD-Specific Tips

The following sections contain information specific to working with BSD code.

BSD Sockets Porting Note
When porting a program written for BSD sockets to MultiNet, observe the following guidelines:

* Change any #include statements to reference files with the same namesin the
MULTINET_ ROOT:[MULTINET.INCLUDE...] directory areas.

* Implement your change in the source code using #ifdef statements to enable the use of MultiNet
include files; you can then compile your softwarein a UNIX environment by selecting the other
side of the #ifdef.

BSD 4.3 TCP/IP Future Compatibility Considerations

MultiNet is currently based on the 4.3BSD-tahoe TCP/IP code; however, future rel eases may be
based on the 4.3 BSD TCP/IP code from the University of Californiaat Berkeley. Thiswill entail
incompatible changes to the formats of the sockaddr and sockaddr _in structure definitions, which
may affect certain customer applications and third-party software. This change isto support the
variable-length sockaddr structures necessary for the 1SO protocols.

By taking these changes into account now, you can make applications compatible with both prior
and new MultiNet rel eases.

The current format of the sockaddr_in structureis:

1-5

MultiNet Programming Tutorial

1-6

struct sockaddr_in {
short sin_famly;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];
b
In the future, the sin_family field will be changed to a single byte, with asin_len field added. The
new format will be:

struct sockaddr_in {

u_char sin_len;

u_char sin_famly;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];
b
Future versions of MultiNet will accept either format from customer applications, but will return
only the new format structures. This affects applications that explicitly check the sin_family field
for thevalue AF_INET. Applications can avoid incompatibilities by avoiding explicit references or
checks of the sin_family field, or by assuming that it can bein either format.

Support for the BSD 4.3 style sockaddr data structure has been added to the BGDRIVER (UCX
interface). If the |IO$M_EXTEND modifier is set on any one of the following QIO operétions, the
sockaddr parameter passed in these operationsis assumed to bein BSD 4.3 format.

* |0$_SETMODE/IO$_SETCHAR (socket, bind)

* |0$_ACCESS (connect, listen)

* |O$_SENSEMODE/IO$_SENSECHAR (getsockname, getpeername)

* |O$_READVBLK (recv_from, when P3 is specified for a UDP or raw | P message)
* |0$ WRITEVBLK (send_to, when P3 is specified for a UDP or raw |P message)

When the |IO$M_EXTEND modifier isused in the creation of a socket via
I0$_SETMODE/I0$_SETCHAR (socket, bind), the setting is remembered for the lifetime of the
socket and all sockaddr structures passed in are assumed to bein BSD 4.3 format. Refer to the
Compaq TCP/IP Services for OpenVMS System Services and C Socket Programming manual for
additional information.

Operations that return a sockaddr (READVBLK (recv_from) like accept, getsockname, and
getpeername), return that sockaddr in BSD 4.3 format. Operations that accept a sockaddr
(WRITEVBLK (send_to) like connect and bind) expect the address family value to be in the
position it isin for the BSD 4.3 structure. When a CONNECT/BIND/ACCEPT operation is done
for a TCP connection with the |O$V_EXTEND bit set, the setting is remembered for the duration
of the connection and all specified sockaddr structures are expected to bein BSD 4.3 format, and
operations returning a sockaddr will returnitin BSD 4.3 format.

For |0$_ACCESS (connect) and |0$_SETMODE (bind), if the portion of the sockaddr structure
that is used to specify the address family in BSD 4.3 format is non-zero, then the sockaddr
structure is assumed to be in BSD 4.3 format.

Chapter 2

Socket Library Functions

This chapter describes the purpose and format of each MultiNet socket library function.

The socket functions described in this chapter are available in the shareable image
MULTINET:MULTINET_SOCKET_LIBRARY.EXE, included in the standard MultiNet
distribution. The include files and example programs are part of the optional MultiNet
Programmers’ Kit, and should be installed as described in the Installation and Administrator’s
Guidebefore you use the programming interface.

In addition to supporting the MultiNet socket library, applications developed for the Compaq
OpenVMS/ULTRIX Connection (UCX) software using the VAX C socket library
(UCX$IPC.OLB) will run over MultiNet, using an emulation of UCX$IPC_SHR.EXE.

Note! To avoid potential conflicts between MultiNet socket library definitions and C compiler
definitions, include a reference to the file

MULTINET_ROOT:[MULTINET.INCLUDE.SYS]TYPES.H before any other header file
references.

AST Reentrancy

The MultiNet socket library is based on the equivalent UNIX programming library, and was
therefore not designed with reentrancy in mind. If you call into the socket library with AST

delivery disabled, some of the library routines will suspend execution and fail to return control to
thecaller.

This situation occurs most often when applications try to call those functions from within an AST
routine where AST delivery is not possible.

Any routine that relies on the select() function is subject to this restriction (including the select()
call itself, and most of the domain name resol ution routines such as gethostbyname(), and so on).

Another reentrancy consideration is the socket library’s use of static internal data structures, some
of which are passed back to the application, asin the case of thehostent structure address returned
by gethostbyname(). Other functions use these data structures internally to maintain context.

In either case, it is dangerous to call into these routines from an AST because it is possible to

2-1

Socket Library Functions

2-2

interrupt asimilar call already in progress, using the same static buffer, thereby corrupting the
contents of the buffer.

Another consideration is the use of routines that send and receive data. Every socket in the kernel
contains two fixed-size buffers for sending and receiving data. If an application tries to transmit
data when there is insufficient buffer space, that call will block (or suspend execution) until buffer
space becomes available. This can become an issue if the application blocks while attempting to
transmit alarge data buffer, and an AST routine tries to transmit a small data buffer. The small data
buffer is transmitted before the large one.

The same situation applies to the functions that read data from the network. This situation may also
arise if multiple reads and writes are performed on sockets which have been set up to be non-
blocking (NBIO).

These considerations might seem overly restrictive; however, the MultiNet socket library is a port
of the BSD socket library, which is subject to all of the same restrictions. Applications which need
to perform /O from within AST routines should use the SY S$QI O system service to talk directly to
the MultiNet device driver.

Therefore, none of the socket routines should be considered AST reentrant.

accept() Socket Library Functions

accept()

Extracts the first connection from the queue of pending connections on a socket, creates a new
socket with the same properties as the original socket, and assigns a new OpenVMS channel to the
new socket. If no pending connections are present on the queue, accept() blocks the caller until a
new connection is present. The original socket remains open and can be used to accept more
connections, but the new socket cannot be used to accept additional connections.

The original socket is created with the socket () function, bound to an address with bind(), andis
listening for connections after alisten().

The accept() function is used with connection-based socket types. Currently the only connection-
based socket is SOCK_STREAM, which, together with AF_INET, constitutes a TCP socket.

FORMAT

New VMS Channel = accept(VMS_Channel, Address, AddrLen);
short New_VMS Channel, VMS_Channel;

struct sockaddr * Address;

unsigned int * AddrLen;

ARGUMENTS
VMS Channé
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the original socket from which to accept the connection.

Address

VMS Usage: socket_address
type: struct sockaddr
access: write only
mechanism: by reference

The optional Address argument is aresult parameter. It isfilled in with the address of the
connecting entity, as known to the communications layer. The exact format of the Address
argument is determined by the domain in which the communication is occurring.

AddrLen

VMS Usage: socket_address_length
type: longword (unsigned)
access: modify

mechanism: by reference

On entry, the optional AddrL en argument contains the length of the space pointed to by Address,

2-3

Socket Library Functions accept()

in bytes. On return, it contains the actual length, in bytes, of the address returned.

RETURNS

2-4

If the accept() is successful, an OpenVMS channel number is returned. If an error occurs, avalue
of -1 isreturned, and a more specific message is returned in the global variables socket_errno and
VMSerrno.

An error code of ENETDOWN can indicate that the program has run out of VM S channelsto usein
creating new sockets. This can be due to either the SY SGEN parameter CHANNELCNT being too
low for the number of connectionsin use by the program, or to a socket leak in the code. M ake sure
the code closes the socket (using close()) when it is done with the socket.

bcmp() Socket Library Functions

bcmp()

Compares arange of memory. This function operates on variable-length strings of bytes and does
not check for null bytes as strcmp() does.

bcmp() is part of the 4.3BSD run-time library, but is not provided by Compag Computer as part of
the VAX C run-timelibrary. It is provided here for compatibility with the 4.3BSD library.

FORMAT
Status = bemp(Stringl, String2, Length);
char *Stringl, * String2;
unsigned int Length;

ARGUMENTS

Sringl,Sring2

VMS Usage: arbitrary
type: byte buffer
access: read only
mechanism: by reference

Pointers to the two buffers to be compared.

Length

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes to be compared.
RETURNS

The bemp() function returns zero if the strings are identical . It returns a nonzero value if they are
different.

2-5

Socket Library Functions bcopy()

bcopy()

Copies memory from one location to another. This function operates on variable-length strings of
bytes and does not check for null bytes as strcpy() does.

bcopy() is part of the 4.3BSD run-time library, but is not provided by Compagq Computer as part of
the VAX C run-timelibrary. It is provided here for compatibility with the 4.3BSD library.

FORMAT
(void) bcopy(Stringl, String2, Length);
char *Stringl, * String2;
unsigned int Length;

ARGUMENTS
Sringl
VMS Usage arbitrary
type: byte buffer
access: read only
mechanism: by reference

The source buffer for the copy operation.

Sring2

VMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The destination buffer for the copy operation.

Length

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes to be copied.

2-6

bind() Socket Library Functions

bind()

Assigns an address to an unnamed socket. When a socket is created with socket(), it existsina
name space (address family) but has no assigned address. bind() requests that the address be
assigned to the socket.

If the port number specified inthe sin_port field of the sockaddr structure isless than 1024,
SYSPRV isrequired to use this function.

FORMAT

Status = bind(VMS_Channel, Name, NameL en);
short VMS_Channel;

struct sockaddr * Name;

unsigned int NameL en;

ARGUMENTS
VMS Channé
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Name

VMS Usage: socket_address
type: struct sockaddr
access: read only
mechanism: by reference

The address to which the socket should be bound. The exact format of the Address argument is
determined by the domain in which the socket was created.

NameL en

VMS Usage: socket_address _length
type: longword (unsigned)
access: read only

mechanism: by value

The length of the Name argument, in bytes.
RETURNS

If the bind() is successful, avalue of O isreturned. If an error occurs, avalue of -1 is returned, and
amore specific messageis returned in the global variablessocket_errno and vmserrno.

2-7

Socket Library Functions bzero()

bzero()

Fills memory with zeros.

bzero() is part of the 4.3BSD run-time library, but is not provided by Compag Computer as part of
the VAX C run-timelibrary. It is provided here for compatibility with the 4.3BSD library.

FORMAT
(void) bzero(String, Length);
char * String;;
unsigned int Length;

ARGUMENTS
Sring
VMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The address of the buffer to receive the zeros.

Length

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The number of bytes to be zeroed.

2-8

connect() Socket Library Functions

connect()

When used on a SOCK_STREAM socket, connect() attempts to make a connection to another
socket. This function, when used on a SOCK_DGRAM socket, permanently specifies the peer to
which datagrams are sent to and received from. The peer socket is specified by name, which isan
address in the communications domain of the socket. Each communications domain interprets the
name parameter inits own way. |If the address of the local socket has not yet been specified with
bind(), thelocal addressis also set to an unused port number when connect() is called.

FORMAT

Status = connect(VMS_Channel, Name, NameL en);
short VMS_Channel;

struct sockaddr * Name;

unsigned int NameL en;

ARGUMENTS
VMS Channé
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Name

VMS Usage: socket_address
type: struct sockaddr
access: read only
mechanism: by reference

The address of the peer to which the socket should be connected. The exact format of the Address
argument is determined by the domain in which the socket was created.

NameLen

VMS Usage: socket_address _length
type: longword (unsigned)
access: read only

mechanism: by value

The length of the Name argument, in bytes.
RETURNS

If the connect() is successful, avalue of 0 isreturned. If an error occurs, avalue of -1 is returned,
and a more specific message is returned in the global variablessocket_errno and vmserrno.

2-9

Socket Library Functions

Domain Name Resolver Routines

Domain Name Resolver Routines

2-10

The following functions exist for compatibility with UNIX 4.3BSD programs that call the DNS
Name Resolver directly rather than through gethostbyname(). The arguments and calling
conventions are compatible with BIND Version 4.8.3. They are subject to change and are not

documented here.

The h_errno variable in the MultiNet socket library that contains the error status of the resolver

routine is accessible to C programs.

dn_comp()
dn_expand()
dn_skip()
dn_skipname()
fp_query()

_getlong()
_getshort()

herror()

p_cdname()
_clasy()

p_query()

p_rr()
p_type()
putlong()
putshort()

_res closg()
res init()

res mkquery()
res_query()
res_querydomain()
res search()
res send()

endhostent() Socket Library Functions

endhostent()

Tellsthe DNS Name Resolver to close the TCP connection to the DNS Name Server that may have
been opened as the result of calling sethostent() with SayOpen set to 1.

FORMAT
(void) endhostent();

2-11

Socket Library Functions endnetent()

endnetent()

Tellsthe DNS Name Resolver to close the TCP connection to the DNS Name Server that may have
been opened as the result of using setnetent() with StayOpen set to 1.

FORMAT
(void) endnetent();

2-12

endprotoent() Socket Library Functions

endprotoent()

Tells the host table routines that the scan started by getprotoent() is complete. endprotoent() is
provided only for compatibility with UNIX 4.3BSD, and isignored by the MultiNet software.

FORMAT
(void) endprotoent();

2-13

Socket Library Functions endservent()

endservent()

Tells the host table routines that the scan started by getservent() is complete. endservent() is
provided only for compatibility with UNIX 4.3BSD, and is ignored by the MultiNet software.

FORMAT
(void) endservent();

2-14

getdtablesize() Socket Library Functions

getdtablesize()

Returns the maximum number of channels available to a process. Thisfunction is normally used to
determine the Width argument to the select() function.

FORMAT
Width = getdtablesize();

RETURNS
The size of the channel table.

2-15

Socket Library Functions gethostbyaddr()

gethostbyaddr()

Looks up a host by its address in the binary host table or the DNS Name Server and returns
information about that host. An alternate entry point _gethostbyaddr (), that looks only in the
binary host table, is also available.

Note! The MultiNet socket library is not reentrant. If you call into it from an AST (interrupt) routine, the
results are unpredictable.

FORMAT

(struct hostent *) gethostbyaddr(Addr, Length, Family);
(struct hostent *) _gethostbyaddr(Addr, Length, Family);
char *Addr;

unsigned int Length;

unsigned int Family;

ARGUMENTS
Addr
VMS Usage: address
type: dependent on Family
access: read only
mechanism: by reference

A pointer to the address to look up. The type is dependent on the Family argument. For Internet
(AF_INET family) addresses, Addr isa pointer to anin_addr structure.

Length

VMS Usage: address length

type: longword (unsigned)
access: read only
mechanism: by value

The size, in bytes, of the buffer pointed to by Addr.

Family

VMS Usage: address family

type: longword (unsigned)
access: read only
mechanism: by value

The address family, and consequently the interpretation of the Addr argument. Normally, thisis
AF_INET, indicating the Internet family of addresses.

RETURNS
If gethostbyaddr () succeeds, it returns a pointer to a structure of type hostent. (See

2-16

gethostbyaddr() Socket Library Functions

gethostbyname() for more information on the hostent structure.) If this function fails, avalue of 0
isreturned, and the global variable h_errnois set to one of the DNS Name Server error codes
defined in the file multinet_root:[multinet.include]lnetdb.h.

2-17

Socket Library Functions gethostbyname()

gethostbyname()

Looks up a host by name in the binary host table or the DNS Name Server and returns information
about that host. An alternate entry point _gethostbyname(), that looks only in the binary host table,
isaso available.

Note! The MultiNet socket library is not reentrant. If you call into it from an AST (interrupt) routine, the
results are unpredictable.

FORMAT

(struct hostent *) gethostbyname(Name);
(struct hostent *) _gethostbyname(Name);

char *Name;
ARGUMENTS
Name
VMS Usage: host_name
type: ASCIZ string
access: read only
mechanism: by reference

A C-language string containing the name of the host to look up.

RETURNS

If gethostbyname() succeeds, it returns a pointer to a structure of type hostent. If thisfunction
fails, avalue of Oisreturned, and the global variable h_errnoisset to one of the DNS Name Server
error codes defined in the file multinet_root:[multinet.includelnetdb.h.

The hostent structure is defined as follows:

struct hostent {

char *h_nane; /* official name */

char **h_al i ases; /* alias list */

i nt h_addrtype; /* host address type */

i nt h_I engt h; /* length of address */

char **h addr _list; /* list of addresses */
#define h_addr h_addr_list[0] /* address, for conpat */

char *h_cput ype; /[* cpu type */

char *h_opsys; /* operating system */

char **h_prot os; /* protocols */

struct sockaddr *h_addresses; /* sockaddr form */

2-18

gethostbysockaddr() Socket Library Functions

gethostbysockaddr()

Looks up a host by socket address in the binary host table or the DNS Name Server and returns
information about that host. An alternate entry point _gethostbysockaddr (), that looks only in the
binary host table, is also available. gethostbysockaddr () isidentical in functionality to
gethostbyaddr (), but takes its arguments in a different form.

Note! The MultiNet socket library is not reentrant. If you call into it from an AST (interrupt) routine, the
results are unpredictable.

FORMAT

(struct hostent *) gethostbysockaddr(Addr, Length);
struct sockaddr * Addr;
unsigned int Length;

ARGUMENTS
Addr
VMS Usage: socket_address
type: struct sockaddr
access: read only
mechanism: by reference

A pointer to asockaddr structure describing the address to look up.

Length

VMS Usage: socket_address length
type: longword (unsigned)
access: read only

mechanism: by value

The size, in bytes, of the sockaddr structure pointed to by Addr.

RETURNS

If gethostbysockaddr () succeeds, it returns a pointer to a structure of type hostent. (See
gethostbyname() for more information on the hostent structure.) If thisfunction fails, avalue of 0
isreturned, and the global variable h_errnois set to one of the DNS Name Server error codes
defined in the file multinet_root:[multinet.include]lnetdb.h.

2-19

Socket Library Functions gethostname()

gethostname()

Returns the Internet name of the host it is executed on. This name comes from the logical name
MULTINET_HOST_NAME and can be set using the SET HOST-NAME command in the
MultiNet Network Configuration utility (NET-CONFIG).

FORMAT
Status = gethostname(String, Length);
char * String;;
unsigned int Length;

ARGUMENTS
Sring
VMS Usage: hostname
type: ASCIZ string
access: write only
mechanism: by reference

A pointer to a buffer to receive the host name.

Length

VMS Usage: hostname_length
type: longword (unsigned)
access: read only
mechanism: by value

The length of the buffer, in bytes. The buffer should be at least 33 bytes long to guarantee that the
complete host name is returned.

RETURNS

If the gethostname() function is successful, it returnsa 0. It returns a-1 if it isunable to translate
the logical name.

2-20

getnetbyaddr() Socket Library Functions

getnetbyaddr()

Looks up a network by its network number in the binary host table or the DNS Name Server and
returns information about that network. An aternate entry point _getnetbyaddr (), that looks only
in the binary host table, is also available.

FORMAT

(struct netent *) getnetbyaddr(Net, Protocol);
(struct netent *) _getnetbyaddr(Net, Protocol);
unsigned int Net, Protocol;

ARGUMENTS
Net
VMS Usage: networ k_number
type: longword (unsigned)
access: read only
mechanism: by value

The network number to look up.

Protocol

VMS Usage: protocol_number
type: longword (unsigned)
access: read only
mechanism: by value

The address family of the network to look up. For Internet networking, this should be specified as
AF_INET.

RETURNS

If getnetbyaddr () succeeds, it returns a pointer to a structure of type netent. (See getnetbyname()
for more information on the netent structure.) If this function fails, a value of 0 is returned, and the
global variable h_errnois set to one of the DNS Name Server error codes defined in
multinet_root:[multinet.include]netdb.h.

2-21

Socket Library Functions getnetbyname()

getnetbyname()

Looks up a network by name in the binary host table or the DNS Name Server and returns
information about that network. An alternate entry point _getnetbyname(), that looks only in the
binary host table, is also available.

FORMAT

(struct netent *) getnetbyname(Name);
(struct netent *) _getnetbyname(Name);

char *Name;
ARGUMENTS
Name
VMS Usage: network_name
type: ASCIZ string
access: read only
mechanism: by reference

A pointer to a C-language string containing the name of the network.

RETURNS

If getnetbyname() succeeds, it returns a pointer to a structure of type netent. If this function fails,
avalue of Oisreturned, and the global variableh_errnois set to one of the DNS Name Server error
codes defined in multinet_root:[multinet.includelnetdb.h.

The netent structure is defined as follows:

struct netent {

char *n_nane; [* official nanme */
char **n_al i ases; [* alias list */
i nt n_addrtype; [* address type */
unsi gned | ong n_net; [* network # */

struct sockaddr *n_addresses; [/* sockaddr form */

2-22

getpeername() Socket Library Functions

getpeername()

Returns the name of the peer connected to the specified socket.

FORMAT

Status = getpeername(VMS_Channel, Address, AddrLen);
short VMS_Channel;

struct sockaddr * Address;

unsigned int * AddrLen;

ARGUMENTS
VMS Channé
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Address

VMS Usage: socket_address
type: struct sockaddr
access: write only
mechanism: by reference

A result parameter. This argument isfilled in with the address of the peer, as known to the
communications layer. The exact format of the Address argument is determined by the domainin
which the communication is occurring.

AddrLen

VMS Usage: socket_address_length
type: longword (unsigned)
access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it containsthe
actual length, in bytes, of the address returned.

RETURNS

If the getpeer name() is successful, avalue of O isreturned. If an error occurs, avalue of -1 is

returned, and a more specific message is returned in the global variablessocket_errno and
VMSErrno.

2-23

Socket Library Functions getprotobyname()

getprotobyname()

Looks up a protocol by name in the binary host table and returns information about that protocol.

FORMAT
(struct protoent *) getprotobyname(Name);
char *Name;
ARGUMENTS
Name
VMS Usage: protocol_name
type: ASCIZ string
access: read only
mechanism: by reference

A pointer to a C-language string containing the name of the protocoal.

RETURNS

If getprotobyname() succeeds, it returns a pointer to a structure of type protoent. If this function
fails, avalue of 0 isreturned.

The protoent structure is defined as follows:

struct protoent {

char *p_nane; /* official protocol nane */
char **p aliases; /* alias list */
i nt p_proto; /* protocol # */

}s

2-24

getprotobynumber() Socket Library Functions

getprotobynumber()

Looks up a protocol by number in the binary host table and returns information about that protocol.

FORMAT

(struct protoent *) getprotobynumber(Number);
unsigned int Number;

ARGUMENTS
Number
VMS Usage: protocol_number
type: longword (unsigned)
access: read only
mechanism: by value

The numeric value of the protocol.

RETURNS

If getprotobynumber () succeeds, it returns a pointer to a structure of type protoent. If this
function fails, avalue of 0 isreturned.

The protoent structure is defined as follows:

struct protoent {

char *p_nane; /* official protocol nane */
char **p aliases; /* alias list */
i nt p_prot o; /* protocol # */

2-25

Socket Library Functions getprotoent()

getprotoent()

Returns the next protocol entry from the binary host table. It is used with setprotoent() and
endprotoent() to scan through the protocol table. The scan isinitialized with setprotoent(), run by
calling getprotoent() until it returns a0, and terminated by calling endprotoent().

FORMAT

(struct protoent *) getprotoent();

RETURNS

2-26

The getprotoent() function returns either a0, indicating that there are no more entries, or a pointer
to a structure of type protoent.

The protoent structure is defined as follows:

struct protoent {

char *p_nane, /* official protocol name */
char **p aliases; /* alias list */
i nt p_prot o; /* protocol # */

getservbyname() Socket Library Functions

getservbyname()

Looks up a service by name in the binary host table and returns information about that service.

The service must be present in the HOSTS.SERVICES or HOSTS.LOCAL file, and the host table
must be compiled into binary form using the host table compiler. See the MultiNet for OpenVMS
Administrator’s Guiddgor more information about editing and compiling the host table files.

FORMAT

(struct servent *) getservbyname(Name, Protocol);
char *Name, * Protocol;

ARGUMENTS
Name
VMS Usage: service_name
type: ASCIZ string
access: read only
mechanism: by reference

A pointer to a C-language string containing the name of the service.

Protocol

VMS Usage: protocol_name
type: ASCIZ string
access: read only
mechanism: by reference

A pointer to a C-language string containing the name of the protocol associated with the service,
suchas"TCP".

RETURNS

If getservbyname() succeeds, it returns a pointer to a structure of type servent. If thisfunction
fails, avalue of 0 isreturned.

The servent structure is defined as follows:

struct servent {

char *s nane; /* official service name */
char **s aliases; [* alias list */

i nt s_port; [* port # */

char *s_proto; /* protocol to use */

2-27

Socket Library Functions getservbyport()

getservbyport()

Looks up a service by protocol port in the binary host table and returns information about that
service.

The service must be present in the HOSTS.SERVICES or HOSTS.LOCAL file, and the host table
must be compiled into binary form using the host table compiler. See the MultiNet for OpenVMS
Administrator’s Guiddgor more information about editing and compiling the host table files.

FORMAT

(struct servent *) getservbyport(Number, Protocol);
unsigned int Number;
char *Protocol;

ARGUMENTS
Number
VMS Usage: service_number
type: longword (unsigned)
access: read only
mechanism: by value

The numeric value of the service port.

Protocol

VMS Usage: protocol_name
type: ASCIZ string
access: read only
mechanism: by reference

A pointer to a C-language string containing the name of the protocol associated with the service,
suchas"TCP".

RETURNS

If getservbyport() succeeds, it returns a pointer to a structure of type servent. (See
getservbyname() for the format of the servent structure.) If thisfunction fails, avalue of O is
returned.

2-28

getservent() Socket Library Functions

getservent()

Returns the next server entry from the binary host table. Thisfunction is used with setservent() and
endser vent() to scan through the service table. The scan is initialized with setservent(), run by
calling getservent() until it returns a 0, and terminated by calling endser vent().

FORMAT
(struct servent *) getservent();

RETURNS

If getservbyport() succeeds, it returns a pointer to a structure of type servent. (See
getservbyname() for the format of the servent structure.) If this function fails, avalue of O is
returned.

2-29

Socket Library Functions getsockname()

getsockname()

Returns the current name of the specified socket.

FORMAT

Status = getsockname(VMS_Channel, Address, AddrLen);
short VMS_Channel;

struct sockaddr * Address;

unsigned int * AddrLen;

ARGUMENTS
VMS Channéd
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Address

VMS Usage: socket_address
type: struct sockaddr
access: write only
mechanism: by reference

A result parameter. It isfilled in with the address of the local socket, as known to the
communications layer. The exact format of the Address argument is determined by the domainin
which the communication is occurring.

AddrLen

VMS Usage: socket_address_length
type: longword (unsigned)
access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it containsthe
actual length, in bytes, of the address returned.

RETURNS

If getsockname() is successful, a,value of O isreturned. If an error occurs, avalue of -1 is returned
and a more specific message is returned in the global variablessocket_errno and vmserrno.

2-30

getsockopt() Socket Library Functions

getsockopt()

Retrieves the options associated with a socket. Options can exist at multiple protocol levels;
however, they are always present at the uppermost socket level.

When manipulating socket options, you must specify the level at which the option resides and the
name of the option. To manipulate options at the socket level, specify Level as SOL_SOCKET.
To manipulate options at any other level, specify the protocol number of the appropriate protocol
controlling the option. For example, to indicate that an option will be interpreted by the TCP
protocol, set L evel to the protocol number of TCP, which can be determined by calling
getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol
module for interpretation. The include file multinet_root:[multinet.include.sys|socket.h contains
definitions for socket-level options. Options at other protocol levels vary in format and name.

For more information on what socket options may be retrieved with getsockopt(), see socket
options.

FORMAT

Status = getsockopt(VMS_Channel, Level, OptName, OptVal, OptLen);
short VMS_Channel;
unsigned int Level, OptName, * OptLen;

char *OptVval;
ARGUMENTS
VMS Channé
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Level

VMS Usage: option_level

type: longword (unsigned)
access: read only
mechanism: by value

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET, or
as a protocol number as returned by getprotobyname).

OptName
VMS Usage: option_name
type: longword (unsigned)

2-31

Socket Library Functions getsockopt()

access: read only
mechanism: by value

The option to be manipulated.

OptVal

VMS Usage: dependent on OptName
type: byte buffer

access: write only

mechanism: by reference

A pointer to a buffer that will receive the current value of the option. The format of this buffer is
dependent on the option requested.

OptLen

VMS Usage: option_length

type: longword (unsigned)
access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by OptVal, in bytes. On return, it contains the
actual length, in bytes, of the option returned.

RETURNS

If the getsockopt() is successful, avalue of O isreturned. If an error occurs, avalueof -1is
returned, and a more specific message is returned in the global variablessocket_errno and
VMSerrno.

2-32

gettimeofday() Socket Library Functions

gettimeofday()

Returns the current time of day in UNIX format. Thisisthe number of seconds and microseconds
elapsed since January 1, 1970.

gettimeofday() is part of the 4.3BSD run-time library, but is not provided by Compagq Computer as
part of the VAX C run-timelibrary. It is provided here for compatibility with the 4.3BSD library.

FORMAT

Status = gettimeofday(TimeVal);
struct timeval * TimeVal;

ARGUMENTS
TimeVal
VMS Usage: UNIX time
type: struct timeval
access: write only
mechanism: by reference

A pointer to a structure that receives the current time. The timeval structure is defined as follows:

struct tineval {
| ong tv_sec; /* seconds */
| ong tv_usec; /* and m croseconds */

RETURNS
The gettimeofday() function always returns avalue of 0, which indicates it was successful.

2-33

Socket Library Functions hostalias()

hostalias()

Examines the user-specific host alias table (if the user has set one by defining the
MULTINET_HOSTALIASES logical name) to see if the specified host nameisavalid aias for
another host name. Thisis normally called by gethostbyname() and res_search() automatically.

FORMAT
(char *) hostalias(Name);
char *Name;
ARGUMENTS
Name
VMS Usage: host_name
type: ASCIZ string
access: read only
mechanism: by reference

A C-language string containing the name of the host to look up in the host aiastable.
RETURNS

If successful, the hostalias() function returns a pointer to the character string of the canonical name
of the host. Otherwise, it returns a 0 to indicate that no aias exists.

2-34

htonl() Socket Library Functions

htonl()

Swaps the byte order of afour-byte integer from OpenVMS byte order to network byte order. This
allows you to develop programs that are independent of the hardware architecture on which they
are running.

FORMAT

RetVal = htonl(Vval);
unsigned long Val;

ARGUMENTS
Val
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The four-byte integer to convert to network byte order.
RETURNS

The htonl() function returns the byte-swapped integer that corresponds to Val. For example, if Val
is 0xc029e401, the returned value is 0x01e429cO0.

2-35

Socket Library Functions htons()

htons()

Swaps the byte order of atwo-byteinteger from OpenVMS byte order to network byte order. This
allows you to develop programs that are independent of the hardware architecture on which they

are running.
FORMAT
RetVal = htons(Val);
unsigned short Val;
ARGUMENTS
Val
VMS Usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

The two-byte integer to convert to network byte order.

RETURNS

The htons() function returns the byte-swapped integer that correspondsto Val. For example, if Val
is 0x0017, the returned value is 0x1700.

2-36

inet_addr() Socket Library Functions

inet_addr()

Converts Internet addresses represented in the ASCII form "xx.yy.zz.ww" to a binary
representation in network byte order.

FORMAT

RetVal = inet_addr(Address);
char * Address;

ARGUMENTS
Address
VMS Usage: internet_address string
type: ASCIZ string
access: read only
mechanism: by reference
A pointer to a C-language string containing an ASCI| representation of the Internet address to
convert.
RETURNS

If successful, theinet_addr () function returns an integer corresponding to the binary representation
of the Internet address in network byte order. It returns a-1 to indicate that it could not parse the
specified Address string.

2-37

Socket Library Functions inet_Inaof()

inet_Inaof()

Returns the local network address portion of the specified Internet address. For example, the class
A address 0x0a050010 (10.5.0.16) is returned as 0x00050010 (5.0.16).

FORMAT

RetVal = inet_|naof (Address);
struct in_addr Address;

ARGUMENTS
Address
VMS Usage: internet_address
type: struct in_addr
access: read only
mechanism: by value

The Internet address from which to extract the local network address portion. The Internet address
is specified in network byte order.

RETURNS

Theinet_Inaof() function returns the local network address portion of the Internet addressin
OpenVMS byte order.

2-38

inet_makeaddr() Socket Library Functions

inet_makeaddr()

Builds a complete Internet address from the separate host and network portions.

FORMAT

RetVal = inet_makeaddr(Network, Host);
unsigned int Network, Host;

ARGUMENTS
Networ k
VMS Usage: networ k_number
type: longword (unsigned)
access: read only
mechanism: by value

The network portion of the Internet address to be constructed. The network portion is specified in
OpenVMS byte order.

Host

VMS Usage: host_number

type: longword (unsigned)
access: read only
mechanism: by value

The host portion of the Internet address to be constructed. The host portion is specified in
OpenVMS byte order.

RETURNS
Theinet_makeaddr () function returns the complete Internet address in network byte order.

2-39

Socket Library Functions inet_netof()

inet_netof()

Returns the network number portion of the specified Internet address. For example, the class A
address 0x0a050010 (10.5.0.16) is returned as 0x0a (10).

FORMAT

RetVal = inet_netof (Address);
struct in_addr Address;

ARGUMENTS
Address
VMS Usage: internet_address
type: struct in_addr
access: read only
mechanism: by value

The Internet address from which to extract the network number portion. The Internet addressis
specified in network byte order.

RETURNS

Theinet_netof() routine returns the network portion of the Internet address in OpenVMS byte
order.

2-40

inet_network() Socket Library Functions

inet_network()

Interprets Internet network numbers represented in the ASCII form "xx", "Xx.yy", or "xx.yy.zz",
and converts them into a binary representation in OpenVMS byte order.

FORMAT

RetVal = inet_network(Address);
char * Address;

ARGUMENTS
Address
VMS Usage: network _address string
type: ASCIZ string
access: read only
mechanism: by reference
A pointer to a C-language string containing an ASCI| representation of the Internet network
number to convert.
RETURNS

If successful, theinet_network() function returns an integer corresponding to the binary
representation of the Internet network in OpenVMS byte order. It returns a-1 to indicate that it
could not parse the specified string.

2-41

Socket Library Functions inet_ntoa()

inet_ntoa()

Converts an Internet address represented in binary form into an ASCI| string suitable for printing.

FORMAT

(char *) inet_ntoa(Address);
struct in_addr Address;

ARGUMENTS
Address
VMS Usage: internet_address
type: struct in_addr
access: read only
mechanism: by value

The Internet address in binary form. The Internet addressis specified in network byte order.
RETURNS

Theinet_ntoa() function returns a pointer to a C- language string corresponding to the Internet
address.

2-42

klread() Socket Library Functions

kiread()

Used with klseek () and multinet_kernel_nlist() to emulate the UNIX 4.3BSD nlist() function and
the reading of the /dev/kmem device. klread() and klseek() read OpenVMS kernel memory
through an interface that is similar to using read() and Iseek() on the /dev/ikmem device.

The OpenVMS CMKRNL privilegeis required to use klread().
Before calling kiread(), specify the address to read from using klseek().

FORMAT

Status = klread(Buffer, Size);
char *Buffer;
unsigned int Size;

ARGUMENTS
Buffer
VMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The address to which to return the kernel memory.

Size

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The number of bytesto read.

RETURNS

If successful, the kiread() function returns the number of bytesread. It returns a-1 to indicate that
it failed because the kernel memory was not readable. This usually indicates that the current
position, as set by klseek(), isinvalid.

2-43

Socket Library Functions klseek()

kiseek()

Used with klread() and multinet_kernel_nlist() to emulatethe UNIX 4.3BSD nlist() function and
reading the /dev/kmem device. kiread() and klseek () read OpenVMS kernel memory through an
interface that is similar to using read() and Iseek() on the /dev/ikmem device.

Use klseek() to set the current position in the network kernel. This position will be used by
kiread() and klwrite() in the next attempt to read or write data.

FORMAT

Status = klseek(Position);
unsigned int Position;

ARGUMENTS
Position
VMS Usage: kernel_address
type: longword (unsigned)
access: read only
mechanism: by value

The address in the network kernel to make the current position for the next kiread() or klwrite()
cal.

RETURNS
The klseek() routine returns the current position as a success status.

2-44

klwrite() Socket Library Functions

klwrite()

Used with klseek() and multinet_kernel_nlist() to emulate the UNIX 4.3BSD nlist() and writing
the /dev/ikmem device. klwrite() and klseek () write OpenVMS kernel memory through an
interface that is similiar to usingwrite() and Iseek () on the /dev/kmem device.

The OpenVMS CMKRNL privilegeis required to use klwrite().
Before calling klwrite(), specify the address to write using klseek().

FORMAT

Status = klwrite(Buffer, Size);
char *Buffer;
unsigned int Size;

ARGUMENTS
Buffer
VMS Usage: arbitrary
type: byte buffer
access: read only
mechanism: by reference

The address of the datato write into kernel memory.

Size

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The number of bytesto write.

RETURNS

If successful, the klwrite() function returns the number of bytes written. It returnsa-1 to indicate
that it failed because the kernel memory was not writeable. This usually indicates that the current
position, as set by klseek(), isinvalid.

2-45

Socket Library Functions listen()

listen()

Specifies the number of incoming connections that may be queued waiting to be accepted. This
backlog must be specified before accepting a connection on a socket. The listen() function applies
only to sockets of type SOCK_STREAM.

FORMAT

Status = listen(VMS_Channel, Backlog);
short VMS_Channel;
unsigned int Backlog;

ARGUMENTS
VMS Channéd
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Backlog

VMS Usage: connection_backlog
type: longword (unsigned)
access: read only
mechanism: by value

The maximum length of the queue of pending connections. If aconnection request arrives when the
queueisfull, the request isignored. The backlog queue length is limited to 5.

RETURNS

If listen() is successful, avalue of O isreturned. If an error occurs, avalue of -1 is returned, and a
more specific message is returned in the global variables socket_errno and vmserrno.

2-46

multinet_kernel_nliith Socket Library Functions

multinet_kernel_nliith

A special version of the UNIX 4.3BSD nlist() function that reads the symbol table to the MultiNet
kernel. Unlike the UNIX 4.3BSD kernel, the MultiNet kernel’s symbol table must be rel ocated
before you can use klseek(), kiread(), or klwrite() to examine the networking kernel.

Many of the same kernel symbols available under 4.3BSD are also available under the MultiNet
software. Use of thisinterface is unsupported, as the symbol nhames and data types may changein
future releases of the Berkeley TCP/IP networking code and in future releases of the MultiNet
software.

To access the symbol table to the MultiNet image that is currently running, read from the file
indicated by the logical name MULTINET _NETWORK_IMAGE..

For more information about how to use multinet_kernel nlist(), seenlist().

2-47

Socket Library Functions nlist()

nlist()

Examines the symbol table in an executable image or symbol table file.

FORMAT
Status = nlist(Filename, nl);
char *Filename;
struct nlist nl[];

ARGUMENTS
Filename
VMS Usage: filename
type: ASCIZ string
access: read only
mechanism: by reference

The file name of the executable image or symbol table file to read.

nl

VMS Usage: symbol_table info
type: array of struct nlist
access: modify

mechanism: by reference

An array of nlist structures. The n_namefield of each element specifies the name of the symbol to
look up; the array isterminated by a null name. Each symbol islooked up in thefile. If the symbol
isfound, the n_typeand n_value fields are filled in with the type and value of the symbal.
Otherwise, they are set to 0.

RETURNS
If successful, the nlist() function returns a 0. Otherwise, it returns a-1.

2-48

ntohl() Socket Library Functions

ntohl()

Swaps the byte order of afour-byte integer from network byte order to OpenVMS byte order. This

allows you to develop programs that are independent of the hardware architecture on which they
are running.

FORMAT

RetVal = ntohl(Vval);
unsigned long Val;

ARGUMENTS
Val
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The four-byte integer to convert to OpenVMS byte order.
RETURNS

The ntohl() function returns the byte-swapped integer that corresponds to Val. For example, if Val
is 0x01e429c0, the returned value is 0xc029e401.

2-49

Socket Library Functions ntohs()

ntohs()

Swaps the byte order of atwo-byteinteger from network byte order to OpenVMS byte order. This
allows you to develop programs that are independent of the hardware architecture on which they

are running.
FORMAT
RetVal = ntohs(Val);
unsigned short Val;
ARGUMENTS
Val
VMS Usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

The two-byte integer to convert to OpenVMS byte order.

RETURNS

The ntohs() function returns the byte-swapped integer that correspondsto Val. For example, if Val
is 0x1700, the returned value is 0x0017.

2-50

recv() Socket Library Functions

recv()

Receives messages from a socket. This function is equivalent to arecvfrom() function called with
the From and FromL en arguments specified as zero. Thesocket_read() function isequivalent to a
recv() function called with the Flags argument specified as zero.

The length of the message received is returned as the status. If amessage istoo long to fit in the
supplied buffer and the socket is type SOCK_DGRAM, excess bytes are discarded.

If no messages are at the socket, the receive function waits for a message to arrive, unless the
socket is non-blocking (see socket ioctl FIONBIO). In this case, a status of -1 is returned and the
global variable socket_errnoisset to EWOULDBLOCK.

FORMAT

Status = int recv (short VMS_Channel, char *Buffer, int Size, int Flags);

ARGUMENTS
VMS Channé
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer
VMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The address of abuffer in which to place the data read.

Size
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value
The length of the buffer specified by Buffer. The actual number of bytes read is returned in the
Satus.
Flags
VMS Usage: mask_word
type: word (unsigned)
access: read only

2-51

Socket Library Functions recv()

mechanism: by value
Control information that affects the recv() function. The Flags argument is formed by ORing one
or more of the following values:

#def i ne M5G_O0B Ox1 /* process out-of-band data */
#def i ne MSG_PEEK 0x2 /* peek at incom ng nessage */

The MSG_OOB flag causes recv() to read any out-of-band data that has arrived on the socket.

The MSG_PEEK flag causes recv() to read the data present in the socket without removing the
data. Thisalowsthe caller to view the data, but leaves it in the socket for future recv() calls.

RETURNS

If recv() is successful, a count of the number of charactersreceived isreturned. A return value of 0
indicates an end-of-file; that is, the connection has been closed. A return value of -1 indicates an
error occured. A more specific messageis returned in the global variables socket_errno and
VMSErrno.

2-52

recvfrom() Socket Library Functions

recvirom()

Receives messages from a socket. This function is equivalent to the recv() function, but takes two
additional arguments that allow the caller to determine the remote address from which the message

was received.

The length of the message received is returned as the status. If amessage istoo long to fit in the
supplied buffer and the socket is type SOCK_DGRAM, excess bytes are discarded.

If no messages are available at the socket, the receive call waits for a message to arrive, unless the
socket is non-blocking (see socket ioctl FIONBIO). In this case, a status of -1 is returned and the
global variable socket_errnoisset to EWOULDBLOCK.

FORMAT

Status = int recvfrom (short VMS_Channel, char * Buffer, int Size, int Flags, struct sockaddr

*From, unsigned int * FromL en);

ARGUMENTS

VMS Channé
VMS Usage:
type:

access.
mechanism:

A channel to the socket.

Buffer
VMS Usage:
type:

access.
mechanism;

channel

word (signed)
read only

by value

arbitrary
byte buffer
write only
by reference

The address of abuffer in which to place the data read.

Size

VMS Usage:
type:

access:
mechanism:

longword_signed
longword (signed)
read only

by value

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the

Satus.

2-53

Socket Library Functions recvfrom()

Flags

VMS Usage: mask_word
type: word (unsigned)
access: read only
mechanism: by value

Control information that affects the recvfrom() function. The Flags argument is formed by ORing
one or more of the following values:

#def i ne M5G OOB Ox1 /* process out-of-band data */
#def i ne MSG_PEEK 0x2 [/* peek at incom ng nessage */

The M SG_OOB flag causes recvfrom() to read any out-of-band data that has arrived on the
socket.

The MSG_PEEK flag causes recvfrom() to read the data present in the socket without removing
the data. This allows the caller to view the data, but leavesit in the socket for futurerecvfrom()

cals.
From
VMS Usage: socket_address
type: struct sockaddr
access: write only
mechanism: by reference

On return, thisoptional argument isfilled in with the address of the host that transmitted the packet,
as known to the communications layer. The exact format of the Addressargument is determined by
the domain in which the communication is occurring.

FromLen

VMS Usage: socket_address length
type: longword (unsigned)
access: modify

mechanism: by reference

On entry, this optional argument contains the length of the space pointed to by From, in bytes. On
return, it contains the actual length, in bytes, of the address returned.

RETURNS

If recvfrom() is successful, acount of the number of charactersreceived isreturned. A return value
of 0 indicates an end-of-file condition; that is, the connection has been closed. If an error occurs, a
value of -1 isreturned, and a more specific message is returned in the global variables
socket_errno and vmserrno.

2-54

recvmsg() Socket Library Functions

recvmsg()

Receives messages from a socket. This function is equivalent to the recvfrom() function, but takes
its arguments in a different fashion and can receive into noncontiguous buffers.

The length of the message received is returned as the status. If amessage istoo long to fit in the
supplied buffer and the socket is type SOCK_DGRAM, excess bytes are discarded.

If no messages are available at the socket, the receive call waits for a message to arrive, unless the
socket is non-blocking (see socket ioctl FIONBIO). In this case, a status of -1 is returned and the
global variable socket_errnoisset to EWOULDBLOCK.

FORMAT
Status = recvmsg(VMS_Channel, Message, Flags);
short VMS_Channel;
struct msghdr * Message;
unsigned int Flags;

ARGUMENTS
VMS Channé
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

M essage

VMS Usage: message header
type: struct msghdr
access: read only
mechanism: by reference

A pointer to a"msghdr" structure that describes the buffer to be received into. The access rights
portion of the structure is unused.

Flags

VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Control information that affects the recvmsg() function. The Flags argument is formed by ORing
one or more of the following values:

2-55

Socket Library Functions recvmsg()

#def i ne M5G OOB Ox1 /* process out-of-band data */

#def i ne MSG _PEEK 0x2 [/* peek at incom ng nessage */
The MSG_OOB flag causes recvmsg() to read any out-of-band data that has arrived on the socket.
The MSG_PEEK flag causes recvmsg() to read the data present in the socket without removing

the data. This allows the caller to view the data, but leavesit in the socket for future recvmsg()
cals.

RETURNS

If recvmsg() is successful, a count of the number of characters received is returned. A return value
of 0 indicates an end-of-file condition; that is, the connection has been closed. If an error occurs, a
value of -1 isreturned, and a more specific message is returned in the global variables
socket_errno and vmserrno.

2-56

select() Socket Library Functions

select()

Examines the OpenVMS Channel sets whose addresses are passed in ReadFds, WriteFds, and
ExceptFdsto seeif some of their Channels are ready for reading, ready for writing, or have an
exceptional condition pending. On return, select() replaces the given Channel sets with subsets
consisting of the Channels that are ready for the requested operation. The total number of ready
Channelsin al the setsis returned.

The select() function is only useful for NETWORK file descriptors and cannot be used for any
other OpenVMS I/O device.

The Channel sets are stored as hit fields in arrays of integers. The following macros are provided
for manipulating such Channel sets: FD_ZERO(& fdset) initializes a Channel set fdset to the null
set; FD_SET(VMS Channel, & fdset) includes a particular Channel VM'S_Channel in fdset;
FD_CLR(VMS Channel, & fdset) removes VM S _Channel from fdset;

FD_ISSET(VMS Channel, & fdset) isnonzeroif VM'S_Channel isamember of fdset, otherwise
itis zero. The behavior of these macrosis undefined if a Channel value isless than zero or greater
than or equal to FD_SETSIZE * CHANNEL SIZE, which is normally at least equal to the
maximum number of Channels supported by the system. Make sure that the definition of these
macros comes from the MultiNet types.h file, as the definitions differ from the UNIX definitions.

Caution! Process Software recommends that you do not change the value of FD_SETSIZE.
However, if you must change it, make sure its value is equal to the maximum number of
channels your system can handle.

Note! The MultiNet socket library is not reentrant. If you call into it from an AST (interrupt) routine, the
results are unpredictable. The select() call must not be used while ASTs have been disabled.
If the select() call is performed with ASTs disabled, the select() call will never return and will
hang the program from which it was called. Instances when this improper call to select() can
occur are as follows:

¢ A cal to select() is performed within an AST routine (that is, executing an AST routine
disables the delivery of other ASTs at the same (user-mode) priority).

* You have explicitly disabled AST delivery in normal (non-AST) code using the $SETAST
system service.

FORMAT

Status = int select(int Width, fd_set, *ReadFds, fd_set, *WriteFds, fd_set, * ExceptFds,
struct timeval, * Timeout);

FD_SET (VMS_Channel, & fdset)

FD_CLR (VMS_Channel, & fdset)

FD_ISSET (VMS_Channel, & fdset)

FD_ZERO (&fdset)

fd_set fdset;

2-57

Socket Library Functions select()
ARGUMENTS
Width
VMS Usage: channel count
type: long (unsigned)
access: read only
mechanism: by value

The number of hits to be checked in each bit mask that represents a Channel; the Channels from 0
through Width-1 in the Channel sets are examined. Typically, width has the value returned by
getdtablesize for the maximum number of Channels.

ReadFds

VMS Usage: channel bitmask
type: struct fd_set
access: modify
mechanism: by reference

A bit-mask of the Channels that select() should test for the ready for reading status. May be
specified asaNULL pointer if no Channels are of interest. Selecting true for reading on a Channel
on which alisten() call has been performed indicates that a subsequent accept() call on that
Channel will not block.

WriteFds

VMS Usage: channel bitmask
type: struct fd_set
access: modify
mechanism: by reference

A bit-mask of the Channels that select() should test for the ready for writing status. May be
specified asaNULL pointer if no Channels are of interest.

ExceptFds

VMS Usage: channel bitmask
type: struct fd_set
access: modify
mechanism: by reference

A bit-mask of the Channels that select() should test for exceptional conditions pending. May be
specified asaNULL pointer if no Channels are of interest. Selecting true for exception conditions
indicates that out-of-band data is present in the Channd’s input buffers.

Timeout

VMS Usage: timeout

type: struct timeval
access: read only
mechanism: by reference

2-58

select() Socket Library Functions

A maximum interval to wait for the selection to complete. If Timeout isaNULL pointer, the select
blocks indefinitely. To effect apoll, the Timeout argument should be anon-NULL pointer,
pointing to a zero-valued timeval structure.

RETURNS

select() returns the number of ready Channels that are contained in the Channel sets, or -1 if an
error occurred. If the time limit expires, select() returns 0. If select() returns with an error, the
Channel sets are unmodified.

2-59

Socket Library Functions select_wake()

select_wake()

Wakes a process waiting in a select() call, aborting the select() operation. This function may be
called from an AST (interrupt) routine, in which case the select() call will be aborted when the AST
routine completes.

FORMAT
select_wake();

2-60

send() Socket Library Functions

send()

Transmits a message to another socket. This function is equivalent to a sendto() called with the To
and ToL en arguments specified as zero. The socket_write() function is equivaent to a send()
function called with Flags specified as zero. Use the send() function only when a socket has been
connected with connect(); however, you can use sendto() at any time.

If no message spaceis available at the socket to hold the message to be transmitted, send() blocks
unless the socket has been placed in non-blocking 1/0 mode viathe socket ioctl FIONBIO. If the
socket istype SOCK_DGRAM and the message is too long to pass through the underlying
protocol in asingle unit, the error EM SGSI ZE is returned and the message is not transmitted.

FORMAT
Status = int send (short VMS_Channel, char *Buffer, int Size);

ARGUMENTS
VMS Channé
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer

VMS Usage: arbitrary
type: byte buffer
access: read only
mechanism: by reference

The address of abuffer containing the data to send.

Size

VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

The length of the buffer specified by Buffer.

RETURNS

If the send() function is successful, the count of the number of characters sent is returned. If an
error occurs, avalue of -1 isreturned, and a more specific message is returned in the global
variables socket_errno and vmserrno.

2-61

Socket Library Functions sendmsg()

sendmsg()

Transmits a message to another socket. It is equivalent to sendto(), but takes its argumentsin a
different fashion and can send noncontiguous data.

If no message space is available at the socket to hold the message to be transmitted, sendmsg()
blocks unless the socket has been placed in non-blocking 1/0 mode viathe socket ioctl FIONBIO.
If the socket istype SOCK_DGRAM and the message is too long to pass through the underlying
protocol in asingle unit, the error EM SGSIZE is returned and the message is not transmitted.

FORMAT
Status = sendmsg(VMS_Channel, Message, Flags);
short VMS_Channel;
struct msghdr * Message;
unsigned int Flags;

ARGUMENTS
VMS Channéd
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

M essage

VMS Usage: message header
type: struct msghdr
access: read only
mechanism: by reference

A pointer to a"msghdr" structure that describes the data to be sent and the addressto send it to. The
access rights portion of the structure is unused.

Flags

VMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Control information that affects the sendto() function. The Flags argument can be zero or the
following:

#def i ne M5G OOB Ox1 /* process out-of-band data */
The MSG_OOB flag causes sendto() to send out-of-band data on sockets that support this

2-62

sendmsg() Socket Library Functions

operation (such as SOCK_STREAM).

RETURNS

If the sendmsg() function is successful, the count of the number of characters sent isreturned. If an
error occurs, avalue of -1 is returned, and amore specific message is returned in the global
variables socket_errno and vmserrno.

2-63

Socket Library Functions

sendto()

sendto()

Transmits a message to another socket. It is equivalent to send(), but also allows the caller to
specify the address to which to send the message. The sendto() function can be used on
unconnected sockets, while send() and socket_write() cannot.

If no message spaceis available at the socket to hold the message to be transmitted, sendto()
blocks unless the socket has been placed in non-blocking 1/0 mode viathe socket ioctl FIONBIO.
If the socket istype SOCK_DGRAM and the message is too long to pass through the underlying
protocol in asingle unit, the error EM SGSIZE is returned and the message is not transmitted.

FORMAT

Status = sendto(VMS_Channel, Buffer, Size, Flags, To, ToLen);

short VMS_Channel;

char *Buffer;

int Size;

unsigned short Flags,

struct sockad

dr *To;

unsigned int ToLen;

ARGUMENTS

A channel to

VMS Channéd
VMS Usage:
type:

access.
mechanism:

the socket.

Buffer
VMS Usage:
type:

access.
mechanism;

channel

word (signed)
read only

by value

arbitrary
byte buffer
read only
by reference

The address of abuffer containing the data to send.

Size

VMS Usage:
type:

access:
mechanism:

longword_signed
longword (signed)
read only
by value

The length of the buffer specified by Buffer.

2-64

sendto() Socket Library Functions

Flags

VMS Usage: mask_word
type: word (unsigned)
access: read only
mechanism: by value

Control information that affects the sendto() function. The Flags argument can be zero or the
following:
#def i ne M5G OOB Ox1 /* process out-of-band data */

The MSG_OOB flag causes sendto() to send out-of-band data on sockets that support this
operation (such as SOCK_STREAM).

To

VMS Usage: socket_address
type: struct sockaddr
access: read only
mechanism: by reference

This optional argument is a pointer to the address to which the packet should be transmitted. The
exact format of the Address argument is determined by the domain in which the communicationis

occurring.
ToLen
VMS Usage: socket_address_length
type: longword (unsigned)
access: read only
mechanism: by value

This optional argument contains the length of the address pointed to by the To argument.

RETURNS

If the sendto() function is successful, the count of the number of characters sent is returned. If an
error occurs, avalue of -1 isreturned, and a more specific message is returned in the global
variables socket_errno and vmserrno.

2-65

Socket Library Functions sethostent()

sethostent()

Initializes the host table and DNS Name Server routines. It is usually unnecessary to call this
function because the host table and Name Server routines are initialized automatically when any of
the other host table routines are called.

FORMAT

(void) sethostent(StayOpen);
unsigned int StayOpen;

ARGUMENTS
SayOpen
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Specifies whether the DNS Name Resolver should use TCP or UDP to communicate with the DNS
Name Server. A nonzero value indicates TCP, and a value of 0 (the default if sethostent() is not
called) indicates UDP.

2-66

setnetent() Socket Library Functions

setnetent()

Initializes the host table and DNS Name Server routines. It is usually unnecessary to call this
function because the host table and Name Server routines are initialized automatically when any of
the other host table routines are called.

FORMAT

(void) setnetent(StayOpen);
unsigned int StayOpen;

ARGUMENTS
SayOpen
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Specifies whether the DNS Name Resolver should use TCP or UDP to communicate with the DNS
Name Server. A nonzero value indicates TCP, and a value of O (the default if setnetent() is not
called) indicates UDP.

2-67

Socket Library Functions setprotoent()

setprotoent()

Initializes the host table routines and sets the next protocol entry returned by getprotoent() to be
thefirst entry.

FORMAT

(void) setprotoent(StayOpen);
unsigned int StayOpen;

ARGUMENTS
SayOpen
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Provided only for compatibility with UNIX 4.3BSD, and isignored by the MultiNet software.

2-68

setservent() Socket Library Functions

setservent()

Initializes the host table routines and sets the next service entry returned by getservent() to be the
first entry.

FORMAT

(void) setservent(StayOpen);
unsigned int StayOpen;

ARGUMENTS
SayOpen
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Provided only for compatibility with UNIX 4.3BSD, and is ignored by the MultiNet software.

2-69

Socket Library Functions setsockopt()

setsockopt()

Mani pulates options associated with a socket. Options may exist at multiple protocol levels;
however, they are always present at the uppermost socket level.

When manipulating socket options, you must specify the level at which the option resides and the
name of the option. To manipulate options at the socket level, specify Level as SOL_SOCKET.
To manipulate options at any other level, specify the protocol number of the appropriate protocol
controlling the option. For example, to indicate that an option isto be interpreted by the TCP
protocol, set L evel to the protocol number of TCP; see getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol
modul e for interpretation. The include file multinet_root:[multinet.include.sys|socket.h contains
definitions for socket-level options. Options at other protocol levels vary in format and name.

FORMAT

Status = setsockopt(VMS_Channel, Level, OptName, OptVal, OptLen);
short VMS_Channel;
unsigned int Level, OptName, OptLen;

char *OptVval;
ARGUMENTS
VMS Channéd
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Level

VMS Usage: option_level

type: longword (unsigned)
access: read only
mechanism: by value

The protocol level at which the option isto be manipulated. L evel can be specified as
SOL_SOCKET, or aprotocol number as returned by getprotobyname().

OptName

VMS Usage: option_name

type: longword (unsigned)
access: read only
mechanism: by value

The option that isto be manipulated.

2-70

setsockopt() Socket Library Functions

OptVal

VMS Usage: dependent on OptName
type: byte buffer

access: read only

mechanism: by reference

A pointer to abuffer that contains the new value of the option. The format of this buffer dependson
the option requested.

OptLen

VMS Usage: option_length

type: longword (unsigned)
access: read only
mechanism: by value

The length of the buffer pointed to by OptVal.

RETURNS

If the setsockopt() is successful, avalue of Oisreturned. If an error occurs, avalue of -1is
returned, and a more specific message is returned in the global variables socket_errno and
VMSErrno.

2-71

Socket Library Functions shutdown()

shutdown()

Shuts down al or part of a full-duplex connection on the socket associated with VM S_Channel.
This function isusually used to signal an end-of-file to the peer without closing the socket, which
would prevent further datafrom being received.

FORMAT

Status = shutdown(VMS_Channel, How);
short VMS_Channel;
unsigned int How;

ARGUMENTS
VMS Channéd
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

How

VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Controls which part of the full-duplex connection to shut down. If How is O, further receive
operations are disallowed. If How is 1, further send operations are disallowed. If How is 2, further
send and receive operations are disallowed.

RETURNS

If shutdown() issuccessful, avalue of Oisreturned. If an error occurs, avalue of -1 isreturned, and
amore specific error message is returned in the global variables socket_errno and vmserrno.

2-72

socket() Socket Library Functions

socket()

Creates an end point for communication and returns an OpenVMS channel that describes the end

point.

FORMAT

VMS_Channel = socket(Address Family, Type, Protocol);
short VMS_Channel;

unsigned int Address_Family, Type, Protocol;

ARGUMENTS

Address Family

VMS Usage: address family

type: longword (unsigned)
access: read only
mechanism: by value

An address family with which addresses specified in later operations using the socket should be
interpreted. The following formats are currently supported; they are defined in the include file
multinet_root:[multinet.include.sys]socket.h:

AF_INET Internet (TCP/1P) addresses

AF _PUP Xerox PUP addresses

AF CHAOS | CHAOSnet addresses

AF NS Xerox XN addresses
Type
VMS Usage: socket_type
type: longword (unsigned)
access: read only
mechanism: by value

The semantics of communication using the created socket. The following types are currently

defined:

SOCK_STREAM | SOCK_DGRAM

SOCK_RAW

A SOCK_STREAM socket provides a sequenced, reliable, two-way connection-oriented byte
stream with an out- of-band data transmission mechanism. A SOCK_DGRAM socket supports
communication by connectionless, unreliable messages of afixed (typically small) maximum
length. SOCK _RAW sockets provide access to internal network interfaces. The type

2-73

Socket Library Functions socket()

SOCK_RAW isavailable only to users with SY SPRV privilege.

The Type argument, together with the Address_Family argument, specifies the protocol to be
used. For example, a socket created with AF_INET and SOCK_STREAM isaTCP socket, and a
socket created with AF_INET and SOCK_DGRAM isaUDP socket.

Protocol

VMS Usage: protocol_number
type: longword (unsigned)
access: read only
mechanism: by value

A particular protocol to be used with the socket. Normally, only a single protocol exists to support
a particular socket type using a given address format. However, it is possible that many protocols
may exist, in which case a particular protocol must be specified by Protocol. The protocol number
to use depends on the communication domain in which communication will take place.

For TCP and UDP sockets, the protocol number MUST be specified as 0. For SOCK_RAW
sockets, the protocol humber should be the value returned by getprotobyname).

RETURNS

If the socket() is successful, an OpenVMS channel isreturned. If an error occurs, avalue of -1 is
returned, and a more specific error message is returned in the global variables socket_errno and
VMSErrno.

2-74

socket_close() Socket Library Functions

socket _close()

Deassigns the OpenVMS channel from the MultiNet INET: device. When the last channel assigned
to the device is deassigned, the device and attached socket are deleted.

If the SO_LINGER socket option is set and data remains in the socket’s output queue,
socket_close() deletes only the device. The attached socket remains in the system until the datais
sent, after which it is deleted. Once socket_close() is caled, there is no way to reference this
socket.

Normally, channels are automatically deassigned at image exit. However, because there is alimit
on the number of open channels per process, the socket_close() function is necessary for programs
that deal with many connections.

FORMAT

Status = socket_close(VMS_Channdl);
short VMS_Channel;

ARGUMENTS
VMS Channé
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket to close.

RETURNS

If the socket_close() is successful, avalue of Oisreturned. If an error occurs, avalue of -1is
returned, and a more specific error message is returned in the global variables socket_errno and
VMSErrno.

2-75

Socket Library Functions socket_ioctl()

socket_ioctl()

Performs a variety of functions on the network. In particular, it manipul ates socket characteristics,
routing tables, ARP tables, and interface characteristics. A socket_ioctl() request has encoded in it
whether the argument is an input or output parameter, and the size of the argument, in bytes. Macro
and define statements used in specifying a socket_ioctl() request are located in the file
multinet_root:[multinet.include.sys]ioctl.h.

FORMAT

Status = socket_ioctl(VMS_Channel, Request, ArgP);
short VMS_Channel;
unsigned int Request;

char *ArgP;
ARGUMENTS
VMS Channéd
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Request

VMS Usage: ioctl_request

type: longword (unsigned)
access: read only
mechanism: by value

Which socket_ioctl() function to perform.

ArgP

VMS Usage: arbitrary

type: byte buffer

access: read, write, or modify depending on Request
mechanism: by reference

A pointer to a buffer whose format and function depend on the Request specified.

RETURNS

If the socket_ioctl() is successful, avalue of O isreturned. If an error occurs, avalue of -1 is
returned, and a more specific error message is returned in the global variables socket_errno and
VMSErrno.

For alist of the socket_ioctl() functions supported by MultiNet, see the following pages.

2-76

socket ioctl FIONBIO Socket Library Functions

socket ioctl FIONBIO

Controls nonblocking 1/0 on a socket. If nonblocking I/O is enabled and ancther function is called
that would have to wait for a connection, for datato arrive, or for data to be transmitted, the
function completes with a-1 error return, and the global variable socket_errnoissetto
EWOULDBLOCK.

FORMAT

Status = socket_ioctl(VMS_Channel, FIONBIO, Enable);
unsigned int * Enable;

ARGUMENTS
Enable
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer that specifies whether nonblocking 1/0 is enabled or disabled. A value of 1
enables nonblocking 1/0, and avalue of 0 disables nonblocking I/0. By default, nonblocking I/0 is
disabled when a socket is created.

2-77

Socket Library Functions socket ioctl FIONREAD

socket ioctl FIONREAD

Retrieves the number of bytes waiting to be read. A return of 0 indicates that no datais buffered.

FORMAT

Status = socket_ioctl(VMS_Channel, FIONREAD, Count);
unsigned int * Count;

ARGUMENTS
Count
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

A pointer to an integer buffer that will receive a count of the number of characters waiting to be
read.

2-78

socket ioctl SIOCADDRT Socket Library Functions

socket ioctl SIOCADDRT

Adds routing information to the network routing tables. This function does not modify the socket
itself, but rather modifies the operation of the network in general. It does not matter what the state
of the socket is. Normally, to modify Internet routing tables, you use a socket created with the
AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCADDRT, Route);
struct rtentry * Route;

ARGUMENTS
Route
VMS Usage: routing_entry
type: struct rtentry
access: read only
mechanism: by reference

A pointer to the address of artentry structure that describes the route to be added. The rtentry
structure is defined in multinet_root:[multinet.include.net]route.h asfollows:

struct rtentry {

u_long rt_hash;
struct sockaddr rt_dst;
struct sockaddr rt_gateway;
short rt_flags;
short rt_refcnt;
u_long rt_use;
struct ifnet *rt_ifp;
b
Field Description
rt_hash, Areignored by SIOCADDRT and should be set to zero.
rt_refent,
rt_use, and
rt_ifp
rt_dst Specifies the address of the destination host or network.
rt_gateway | Specifiesthe address of the local gateway to this host or network.

2-79

Socket Library Functions socket ioctl SIOCADDRT

Field

Description

rt_flags

Specifies one or more of the following flags that affect a routing entry:

#define RTF_UP Ox1 /* route useable */
#define RTF_GATEWAY 0x2 /* destination is a gateway */
#defi ne RTF_HOST 0x4 /* host entry (net otherw se)*/

RTF_UP—Indicates that the route is usable. It should always be specified.

RTF_GATEWAY— Indicatesthat the next hop to the destination is a gateway, so
that the output routines know to address the gateway rather than the destination
directly.

RTF_HOST—Indicates that the address specified in rt_dst is an Internet host,
rather than an Internet network (the default).

2-80

socket ioctl SIOCDELRT Socket Library Functions

socket ioctl SIOCDELRT

Deletes routing information from the network routing tables. This function does not modify the
socket itself, but rather modifies the operation of the network in general. It does not matter what the
state of the socket is. Normally, to modify Internet routing tables, you use a socket created with the
AF_INET and SOCK_DGRAM arguments.

Itisimpossibleto obtain alist of the routesinstalled via socket_ioctl(). To delete aroute, you must
either know it already exists or use multinet_kernel_nlist() to read the routing tables directly from
the networking kernel.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCDELRT, Route);
struct rtentry * Route;

ARGUMENTS
Route
VMS Usage: routing_entry
type: struct rtentry
access: read only
mechanism: by reference

A pointer to the address of artentry structure that describes the route to be deleted. The rtentry
structure is defined in multinet_root:[multinet.include.net]route.h asfollows:

struct rtentry {
u_long rt_hash;
struct sockaddr rt_dst;
struct sockaddr rt_gateway;
short rt_flags;
short rt_refcnt;
u_long rt_use;
struct ifnet *rt_ifp;

b
Field Description
rt_hash, Areignored by SIOCDEL RT and should be set to zero.
rt_refent,
rt_use, and
rt_ifp
rt_dst Specifies the address of the destination host or network.

rt_gateway | Specifiesthe address of the local gateway to this host or network.

2-81

Socket Library Functions socket ioctl SIOCDELRT

Field

Description

rt_flags

Specifies one or more of the following flags that affect a routing entry:

#define RTF_UP Ox1 /* route useable */
#define RTF_GATEWAY 0x2 /* destination is a gateway */
#defi ne RTF_HOST 0x4 /* host entry (net otherw se) */

RTF_UP—Indicates that the route is usable. It should always be specified.

RTF_GATEWAY— Indicatesthat the next hop to the destination is a gateway, so
that the output routines know to address the gateway rather than the destination
directly.

RTF_HOST—Indicates that the address specified in rt_dst is an Internet host,
rather than an Internet network (the default).

2-82

socket ioctl SIOCATMARK Socket Library Functions

socket ioctl SIOCATMARK

Retrieves an indication as to whether the next byte in the stream coincides with an out-of-band or
URGENT data mark.

FORMAT

Status = socket_ioctl(VMS_Channel, SSOCATMARK, AtMark);
unsigned int * AtMark;

ARGUMENTS
AtMark
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

A pointer to an integer buffer that will receive the indication. The buffer is set to O if the socket is
not at the out-of-band mark. It is set to nonzero if the socket is at the out-of-band mark.

2-83

Socket Library Functions socket ioctl SIOCDARP

socket ioctl SIOCDARP

Deletes an entry from the ARP table. This format is compatible with the UNIX 4.3BSD function of
the same name.

FORMAT

Status = socket_ioctl (VMS_Channel, SSOCDARP, ARP_Req);
struct arpreq * ARP_Req;

ARGUMENTS
ARP_Req
VMS Usage: arp_request
type: struct arpreq
access: read only
mechanism: by reference

The address of an ar preq structure that contains the protocol address and the hardware address.
The arpreq structure is defined in multinet_root:[multinet.include.net]if_arp.h asfollows:

struct arpreq {

struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardwar e address */
i nt arp_fl ags; /* flags */
b
/* arp_flags and at_flags field values */
#def i ne ATF_| NUSE 0x01 /* entry in use */
#def i ne ATF_COM 0x02 /* conpleted entry (enaddr valid) */
#def i ne ATF_PERM 0x04 /* permanent entry */
#def i ne ATF_PUBL 0x08 /* publish entry (respond for other host)
*/

#def i ne ATF_USETRAI LERS 0x10 /* has requested trailers */
#def i ne ATF_PROXY 0x20 /* Do PROXY arp */

Thearp_pafield isasockaddr field that is set to the ip address the remote interface uses.

Thearp_ha.sa _datafield is 6 bytes of binary data that represents the Ethernet address of the
remote interface.

2-84

socket ioctl SIOCGARP Socket Library Functions

socket ioctl SIOCGARP

Displaysan entry in the ARP table. Thisfunction is compatible with the UNIX 4.3BSD function of
the same name.

FORMAT

Status = socket_ioctl (VMS_Channel, SSIOCGARP, ARP_Req);
struct arpreq *ARP_Req;

ARGUMENTS
ARP_Req
VMS Usage: arp_request
type: struct arpreq
access: modify
mechanism: by reference

The address of an ar preq structure that contains the protocol address and the hardware address.
The arpreq structure is defined in multinet_root:[multinet.include.net]if_arp.h asfollows:

struct arpreq {

struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardwar e address */
i nt arp_fl ags; /* flags */
b
/* arp_flags and at_flags field values */
#def i ne ATF_| NUSE 0x01 /[* entry in use */
#def i ne ATF_COM 0x02 /* conpleted entry (enaddr valid) */
#def i ne ATF_PERM 0x04 /* permanent entry */
#def i ne ATF_PUBL 0x08 /* publish entry (respond for other host)
*/

#def i ne ATF_USETRAI LERS 0x10 /* has requested trailers */
#def i ne ATF_PROXY 0x20 /* Do PROXY arp */

Thearp_pafield isasockaddr field that is set to the ip address the remote interface uses.

Thearp_ha.sa _datafield is 6 bytes of binary data that represents the Ethernet address of the
remote interface.

2-85

Socket Library Functions socket ioctl SIOCSARP

socket ioctl SIOCSARP

Adds an entry to the ARP table. Thisfunction is compatible with the UNIX 4.3BSD function of the
same name.

FORMAT

Status = socket_ioctl (VMS_Channel, SSIOCSARP, ARP_Req);
struct arpreq * ARP_Req;

ARGUMENTS
ARP_Req
VMS Usage: arp_request
type: struct arpreq
access: read only
mechanism: by reference

The address of an ar preq structure that contains the protocol address and the hardware address.
The arpreq structure is defined in multinet_root:[multinet.include.net]if_arp.h asfollows:

struct arpreq {

struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardwar e address */
i nt arp_fl ags; /* flags */
b
/* arp_flags and at_flags field values */
#def i ne ATF_| NUSE 0x01 /* entry in use */
#def i ne ATF_COM 0x02 /* conpleted entry (enaddr valid) */
#def i ne ATF_PERM 0x04 /* permanent entry */
#def i ne ATF_PUBL 0x08 /* publish entry (respond for other host)
*/

#def i ne ATF_USETRAI LERS 0x10 /* has requested trailers */
#def i ne ATF_PROXY 0x20 /* Do PROXY arp */

Thearp_pafield isasockaddr field that is set to the ip address the remote interface uses.

Thearp_ha.sa _datafield is 6 bytes of binary data that represents the Ethernet address of the
remote interface.

2-86

socket ioctl SIOCGIFADDR Socket Library Functions

socket ioctl SIOCGIFADDR

Retrieves the Internet address of a network interface. This function does not modify the socket
itself, but rather examines the operation of the network in general. It does not matter what the state
of the socket is. Normally, to examine Internet addresses, you use a socket created with the
AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCGIFADDR, Interface_Req);
struct ifreq * Interface_Req;

ARGUMENTS
Interface Req
VMS Usage: interface request
type: struct ifreq
access: modify
mechanism: by reference

The address of an ifreq structure that describes the interface from which to retrieve the address.
Theifreq structure is defined in multinet_root:[multinet.include.net]if.h asfollows:

struct ifreq {
char ifr_nane[16];
struct sockaddr ifr_addr;

b
Theifr_namefield is anull-terminated string specifying the name of the interface to be examined,
such as "se0".

Theifr_addr field isasockaddr structure that is set to the address of the interface.

2-87

Socket Library Functions socket ioctl SIOCSIFADDR

socket ioctl SIOCSIFADDR

Sets the Internet address of a network interface. Normally, thisis done using the MULTINET SET/
INTERFACE command. This function does not modify the socket itself, but rather modifies the
operation of the network in general. It does not matter what the state of the socket is. Normally, to
modify Internet addresses, you use a socket created with the AF_INET and SOCK_DGRAM
arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCSIFADDR, Interface Req);
struct ifreq *Interface Req;

ARGUMENTS
Interface Req
VMS Usage: interface request
type: struct ifreq
access: read only
mechanism: by reference

The address of an ifreq structure that describes the address to be set. Theifreq structureis defined
in multinet_root:[multinet.include.net]if.h asfollows:

struct ifreq {
char ifr_name[16];
struct sockaddr ifr_addr;
b
Theifr_namefield is anull-terminated string specifying the name of the interface to be modified,
such as"se0".

Theifr_addr field isasockaddr structure specifying the address to be set.

2-88

socket ioctl SIOCGIFBRDADDR Socket Library Functions

socket ioctl SIOCGIFBRDADDR

Retrieves the Internet broadcast address of a network interface. This function does not modify the
socket itself, but rather examines the operation of the network in general. It does not matter what
the state of the socket is. Normally, to examine Internet broadcast addresses, you use a socket
created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCGIFBRDADDR, Interface Req);
struct ifreq * Interface_Req;

ARGUMENTS
Interface Req
VMS Usage: interface request
type: struct ifreq
access: modify
mechanism: by reference

The address of an ifreq structure that describes the interface from which to retrieve the broadcast
address. Theifreq structure is defined in multinet_root:[multinet.include.net]if.h asfollows:

struct ifreq {
char ifr_name[16];
struct sockaddr ifr_broadaddr;
b
Theifr_namefield is anull-terminated string specifying the name of the interface to be examined,
such as "se0".

Theifr_broadaddr field isasockaddr structurethat is set to the broadcast address of the
interface.

2-89

Socket Library Functions socket ioctl SIOCSIFBRDADDR

socket ioctl SIOCSIFBRDADDR

Sets the Internet broadcast address of a network interface. Normally, this is done using the
MULTINET SET/INTERFACE command. This function does not modify the socket itself, but
rather modifies the operation of the network in general. It does not matter what the state of the
socket is. Normally, to modify Internet broadcast addresses, you use a socket created with the
AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCSIFBRDADDR, Interface_Req);
struct ifreq *Interface Req;

ARGUMENTS
Interface Req
VMS Usage: interface request
type: struct ifreq
access: read only
mechanism: by reference

The address of an ifreq structure that describes the interface on which to set the broadcast address.
Theifreq structure is defined in multinet_root:[multinet.include.net]if.h asfollows:

struct ifreq {
char ifr_name[16];
struct sockaddr ifr_broadaddr;

b
Theifr_namefield isanull-terminated string specifying the name of the interface to be modified,
such as "se0".

Theifr_broadaddr field is asockaddr structure specifying the broadcast address to be set.

2-90

socket ioctl SIOCGIFCONF Socket Library Functions

socket ioctl SIOCGIFCONF

Retrieves the list of network interfaces from the networking kernel for further examination by the
other SIOCGxxxx functions. This function does not modify the socket itself, but rather examines
the operation of the network in general. It does not matter what the state of the socket is. Normally,
to examine the network configuration, you use a socket created withthe AF_INET and
SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCGIFCONF, Interface_Config);
struct ifconf *Interface_Config;

ARGUMENTS
Interface Config
VMS Usage: interface _configuration_request
type: struct ifconf
access: modify
mechanism: by reference

The address of an ifconf structure describing a buffer in which to return the interface configuration.
Theifconf structure is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifconf {
i nt ifc_len; /* size of buffer */
uni on {
caddr _t ifcu_buf;
struct ifreq *ifcu_req;
} ifc_ifcu;
#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req [* array of structures */
b
Theifc_len field should be set to the length of the buffer specified by ifc_buf. Upon return, the
ifc_len field contains the actual number of bytes written into the buffer.

Theifc_buf field should be set to a buffer large enough to hold the entire network configuration.
Upon return, the ifc_req buffer contains an array of ifreq structures, one for each interface and
address.

The following short fragment of C-language code prints al Internet family interfaces and shows
how to decode the ifconf structure:

n =ifc.ifc_len/sizeof(struct ifreq);

for (ifr = ifc.ifc_req; n>0; n--, ifr++) {
if (ifr->ifr_addr.sa_famly !'= AF_INET) continue;
printf("%\n",ifr->ifr_nane);

2-91

Socket Library Functions socket ioctl SIOCGIFDSTADDR

socket ioctl SIOCGIFDSTADDR

Retrieves the destination Internet address of a point-to-point network interface. This function does
not modify the socket itself, but rather examines the operation of the network in general. It does not
matter what the state of the socket is. Normally, to examine Internet addresses, you use a socket
created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCGIFDSTADDR, Interface Req);
struct ifreq * Interface_Req;

ARGUMENTS
Interface Req
VMS Usage: interface request
type: struct ifreq
access: modify
mechanism: by reference

The address of an ifreq structure that describes the interface from which to retrieve the destination
address. Theifreq structure is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {
char ifr_nane[16];
struct sockaddr ifr_dstaddr;

b
Theifr_namefield is anull-terminated string specifying the name of the interface to be examined,
such as "se0".

Theifr_dstaddr field isasockaddr structurethat is set to the destination address of the interface.

2-92

socket ioctl SIOCSIFDSTADDR Socket Library Functions

socket ioctl SIOCSIFDSTADDR

Sets the destination Internet address of a point-to-point network interface. Normally, thisis done
using the MULTINET SET/INTERFACE command. This function does not modify the socket
itself, but rather modifies the operation of the network in general. It does not matter what the state
of the socket is. Normally, to modify Internet addresses, you use a socket created with the
AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCSIFDSTADDR, Interface Req);
struct ifreq * Interface_Req;

ARGUMENTS
Interface Req
VMS Usage: interface request
type: struct ifreq
access: read only
mechanism: by reference

The address of an ifreq structure that describes the interface on which to set the destination address.
Theifreq structure is defined in multinet_root:[multinet.include.net]if.h asfollows:

struct ifreq {
char ifr_nane[16];
struct sockaddr ifr_dstaddr;

b
Theifr_namefield isanull-terminated string specifying the name of the interface to be modified,
such as "se0".

Theifr_dstaddr field isasockaddr structure specifying the destination address to be set.

2-93

Socket Library Functions socket ioctl SIOCGIFFLAGS

socket ioctl SIOCGIFFLAGS

Retrieves various control flags from a network interface. This function does not modify the socket
itself, but rather examines the operation of the network in general. It does not matter what the state
of the socket is. Normally, to examine interface flags, you use a socket created with the AF_INET
and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCSIFFLAGS, Interface Req);
struct ifreq *Interface Req;

ARGUMENTS
Interface Req
VMS Usage: interface request
type: struct ifreq
access: modify
mechanism: by reference

The address of an ifreq structure that describes the state of the flags. Theifreq structure is defined
in multinet_root:[multinet.include.net]if.h asfollows:

struct ifreq {
char ifr_nane[16];
short ifr_fl ags;
char Xfill[14];
b
Theifr_namefield is anull-terminated string specifying the name of the interface to be examined,
such as "se0".

Theifr_flagsfield receives the state of the interface flags. The following flag bits are valid:

#define | FF_UP 0x1 /* interface is up */
#defi ne | FF_BROADCAST 0x2 /* broadcast address valid */
#def i ne | FF_DEBUG 0x4 /* turn on debugging */

#defi ne | FF_LOOPBACK 0x8 /* is a | oopback net */
#define | FF_PO NTOPO NT 0x10 /* interface is ptp link */
#define | FF_NOTRAILERS 0x20 /* avoid use of trailers */
#define | FF_RUNNI NG 0x40 [/* resources allocated */
#def i ne | FF_NOARP 0x80 /* no ARP protocol */

2-94

socket ioctl SIOCSIFFLAGS Socket Library Functions

socket ioctl SIOCSIFFLAGS

Sets various control flags on a network interface. Normally thisis done using the MULTINET
SET/INTERFACE command.

To modify the state of aflag, first call the SIOCGIFFLAGS socket_ioctl() function, change
whichever bits are necessary, and then reset the flags by calling SIOCSIFFLAGS socket_ioctl().

This function does not modify the socket itself, but rather modifies the operation of the network in
general. It does not matter what the state of the socket is. Normally, to modify interface flags, you
use a socket created with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCSIFFLAGS, Interface Req);
struct ifreq *Interface_Req;

ARGUMENTS
Interface Req
VMS Usage: interface request
type: struct ifreq
access: read only
mechanism: by reference

The address of an ifreq structure that describes the new state of the flags. Theifreq structureis
defined in multinet_root:[multinet.include.net]if.h asfollows:

struct ifreq {
char ifr_name[16];
short ifr_flags;
char Xfill[14];
b
Theifr_namefield isanull-terminated string specifying the name of the interface to be modified,
such as "se0".

Theifr_flags field specifies the new state of the interface flags. The following flags can be set or

cleared:

#define | FF_UP 0x1 /[* interface is up */

#def i ne | FF_DEBUG 0x4 /[* turn on debuggi ng */
#define | FF_NOTRAI LERS 0x20 /* avoid use of trailers */
#defi ne | FF_NOAR 0x80 /* no ARP protocol */

2-95

Socket Library Functions socket ioctl SIOCGIFMETRIC

socket ioctl SIOCGIFMETRIC

Retrieves the network interface metric, or cost. The interface metric isignored by the MultiNet
software, and is not documented further here.

2-96

socket ioctl SIOCSIFMETRIC Socket Library Functions

socket ioctl SIOCSIFMETRIC

Setsthe network interface metric, or cost. The interface metric isignored by the MultiNet software,
and is not documented further here.

2-97

Socket Library Functions socket ioctl SIOCGIFNETMASK

socket ioctl SIOCGIFNETMASK

Retrieves the Internet address mask of a network interface. This function does not modify the
socket itself, but rather examines the operation of the network in general. It does not matter what
the state of the socket is. Normally, to examine Internet address masks, you use a socket created
with the AF_INET and SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCGIFNETMASK, Interface_Req);
struct ifreq *Interface Req;

ARGUMENTS
Interface Req
VMS Usage: interface request
type: struct ifreq
access: modify
mechanism: by reference

The address of an ifreq structure that describes the interface from which to retrieve the address
mask. Theifreq structure is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {
char ifr_nane[16];
struct sockaddr ifr_addr;

b
Theifr_namefield is anull-terminated string specifying the name of the interface to be examined,
such as "se0".

Theifr_addr field isasockaddr structure that is set to the address mask of the interface.

2-98

socket ioctl SIOCSIFNETMASK Socket Library Functions

socket ioctl SIOCSIFNETMASK

Setsthe Internet address mask of a network interface. Normally, thisis done using the MULTINET
SET/INTERFACE command. This function does not modify the socket itself, but rather modifies
the operation of the network in general. It does not matter what the state of the socket is. Normally,
to modify Internet address masks, you use a socket created with the AF_INET and
SOCK_DGRAM arguments.

FORMAT

Status = socket_ioctl(VMS_Channel, SIOCSIFNETMASK, Interface Req);
struct ifreq * Interface_Req;

ARGUMENTS
Interface Req
VMS Usage: interface request
type: struct ifreq
access: read only
mechanism: by reference

The address of an ifreq structure that describes the interface on which to set the address mask. The
ifreq structure is defined in multinet_root:[multinet.include.net]if.h as follows:

struct ifreq {
char ifr_name[16];
struct sockaddr ifr_addr;

b
Theifr_namefield isanull-terminated string specifying the name of the interface to be modified,
such as "se0".

Theifr_addr field isasockaddr structure specifying the address mask to be set.

2-99

Socket Library Functions socket option SO_BROADCAST

socket option SO_BROADCAST

Enables transmission of broadcast messages on the specified socket.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO BROADCAST, On, sizeof(*On));
unsigned int * On;

ARGUMENTS
On
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies whether the transmission of broadcast messagesis
enabled or disabled. A nonzero value enables the transmission of broadcast messages, a value of 0
disables the transmission.

2-100

socket option SO_DEBUG Socket Library Functions

socket option SO_DEBUG

Contrals the recording of debugging information by the MultiNet networking kernel.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_DEBUG, On, sizeof (* On));
unsigned int * On;

ARGUMENTS
On
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies whether debugging is enabled or disabled. A nonzero
value enables debugging. A value of 0 disables debugging.

2-101

Socket Library Functions socket option SO_DONTROUTE

socket option SO_DONTROUTE

Indicates that outgoing messages bypass the standard routing facilities. Instead, messages are
directed to the appropriate network interface, as determined by the network portion of the
destination address.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_DONTROUTE, On, sizeof(* On));
unsigned int * On;

ARGUMENTS
On
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies whether SO DONTROUTE is enabled or disabled. A
nonzero value enables SO DONTROUTE. A value of 0 disablesSO_DONTROUTE.

2-102

socket option SO_ERROR Socket Library Functions

socket option SO_ERROR

Retrieves and clears any error status pending on the socket. This function is only valid with the
getsockopt() function.

FORMAT
Status = getsockopt(VMS_Channel, SOL_SOCKET, SO_ERROR, Value, Length);
unsigned int *Value;
unsigned int * Length;

ARGUMENTS
Value
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

A pointer to an integer buffer that receives the value of errno (the error number) that is pending on
the socket.

Length

VMS Usage: longword_unsigned
type: longword (unsigned)
access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Value, in bytes. On return, it contains the
actual length, in bytes, of the Value returned.

2-103

Socket Library Functions socket option SO_KEEPALIVE

socket option SO_KEEPALIVE

Enabl es periodic transmission of messages on an idle connected socket. If the connected party fails
to respond to these messages, the connection is considered broken and processes using the socket
are notified viaan error returned by aread.

K eepalives are aquestionable use of the network in that they cause idle connections to add network
traffic by constantly probing their peer. Avoid keepalives if another mechanism is available to
detect the loss of a peer, such as timeouts.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_KEEPALIVE, On, sizeof(*On));
unsigned int * On;

ARGUMENTS
On
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies whether keepalives are enabled or disabled. A nonzero
value enables keepalives. A value of 0 disables keepalives.

2-104

socket option SO_LINGER Socket Library Functions

socket option SO_LINGER

Contrals the action taken when unsent messages are queued on a socket and a socket_close()
function call isissued. If the socket promises reliable delivery of dataand SO_LINGER is set,
socket_close() deletes only the device. The attached socket remains in the system until this datais
sent or until it determinesthat it cannot deliver the information (atimeout period, termed the linger
interval, is specified in the setsockopt() function). Only then is the attached socket deleted.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_LINGER, Linger, sizeof(*Linger));
struct linger *Linger;

ARGUMENTS
Linger
VMS Usage: linger_structure
type: struct linger
access: read only
mechanism: by reference

A pointer to a structure describing whether the SO_LINGER option is enabled or disabled.

struct linger {
int | _onoff; /* option on/off */
i nt | _linger; /* linger tine */
b

When the |_onoff field is nonzero, SO_LINGER isenabled. Whenitis0, SO_LINGER is
disabled. If SO_LINGER isbeing enabled, thel_linger field specifies the timeout period, in
seconds.

2-105

Socket Library Functions socket option SO_OOBINLINE

socket option SO_OOBINLINE

Enables receipt of out-of-band data along with the regular data stream. You can use this option
instead of specifyingthe M SG_OOB flag to the recv() or recvfrom() functions.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_OOBINLINE, On, sizeof(*On));
unsigned int * On;

ARGUMENTS
On
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies whether the SO_OOBINLINE option is enabled or
disabled. A nonzero value enables SO_OOBINLINE. A value of 0 disables SO_OOBINLINE.

2-106

socket option SO_RCVBUF Socket Library Functions

socket option SO_RCVBUF

Specifies the amount of buffer space that can be used to buffer received data on the socket. The
default value is 6144. You can specify this option to raise the TCP window size, increase the
maximum size of UDP datagrams that can be received, or increase buffer space in general.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_RCVBUF, Value, sizeof(* Value));
unsigned int *Value;

ARGUMENTS
Value
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies the new size of the receive buffer, in bytes.

2-107

Socket Library Functions socket option SO_RCVLOWAT

socket option SO_RCVLOWAT

This option exists only for compatibility with UNIX 4.3BSD and has no effect on MultiNet
sockets.

2-108

socket option SO_RCVTIMEO Socket Library Functions

socket option SO_RCVTIMEO

This option exists only for compatibility with UNIX 4.3BSD and has no effect on MultiNet
sockets.

2-109

Socket Library Functions socket option SO_REUSEADDR

socket option SO_REUSEADDR

Specifies how to reuse local addresses.

When SO_REUSEADDR is enabled, bind() allows alocal port number to be used even if sockets
using the same local port number already exist, provided that these sockets are connected to a
unique remote port. This option allows a server to bind() to a socket to listen for new connections,
even if connections are already in progress on this port.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_REUSEADDR, On, sizeof(* On));
unsigned int * On;

ARGUMENTS
On
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies whether SO REUSEADDR is enabled or disabled. A
nonzero value enables SO REUSEADDR. A value of 0 disables SO_ REUSEADDR.

2-110

socket option SO_SNDBUF Socket Library Functions

socket option SO_SNDBUF

Specifies the amount of buffer space that can be used to buffer transmitted data on the socket. The
default value is 6144 for TCP and 2048 for UDP. You can specify this option to raise the TCP

window size, increase the maximum size of UDP datagrams that can be transmitted, or increase
buffer spacein general.

FORMAT

Status = setsockopt(VMS_Channel, SOL_SOCKET, SO_SNDBUF, Value, sizeof(*Value));
unsigned int *Value;

ARGUMENTS
Value
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies the new size of the transmit buffer, in bytes.

2-111

Socket Library Functions socket option SO_SNDLOWAT

socket option SO_SNDLOWAT

This option exists only for compatibility with UNIX 4.3BSD and has no effect on MultiNet
sockets.

2-112

socket option SO_SNDTIMEO Socket Library Functions

socket option SO_SNDTIMEO

This option exists only for compatibility with UNIX 4.3BSD and has no effect on MultiNet
sockets.

2-113

Socket Library Functions socket option SO_TYPE

socket option SO_TYPE

Retrieves the socket type (such as SOCK_DGRAM or SOCK_STREAM). Thisfunctionis only
valid with the getsockopt() function.

FORMAT

Status = getsockopt(VMS_Channel, SOL_SOCKET, SO_TY PE, sizeof(*Value));
unsigned int *Value;

ARGUMENTS
Value
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

A pointer to an integer buffer that receives the socket type.

2-114

socket option TCP_KEEPALIVE Socket Library Functions

socket option TCP_KEEPALIVE

Lets you specify how long an idle socket remains open if the SO_KEEPALIVE option is enabled.
If SO_ KEEPALIVE isenabled, TCP_KEEPALIVE letsyou specify:

Idletime The amount of time a TCP socket should remain idle before sending the first
keepalive packet.

Probeinterval | The amount of time between keepalive packets.

Probe count The number of keepalive packetsto be sent before the connection is closed.

This feature is available to both the INETDRIVER and the UCXDRIVER, athough it is usually
accessed through the UCXDRIVER.

FORMAT

Status = setsockopt(VMS_Channel, IPPROTO_TCP, TCP_KEEPALIVE, keepalive), sizeof (struct

tcp_keepalive));
struct tcp_keepalive *Keepalive

ARGUMENTS
Keepalive
VMS Usage: keepalive structure
type: struct tcp_keepalive
access: read only
mechanism: by reference

A pointer to a structure specifying the keepalive parameter valuesidle time, probe intvl, and
probe _count.

The structure TCP_KEEPALIVE definition can be found in the include file TCPH, asfollows:

struct tcp_keepalive {

int idle_tine; /*Time before first probe */

int probe_intvl; /*Tinme between probes */

int probe_count; /*Nunber of probes before closing connection */
b
Theidle_time and probe_intvl values are specified in seconds; probe_count is the number of
probes to send before closing the connection.

The minimum value for idle_timeis 75 seconds. If avalue lessthan 75 is specified, 75 is used.

If avalue of O (zero) is specified for any of the entries in the structure, the current value is retained.

Note! The system default values are an idle_time value of 120 minutes, a probe_intvl value of 75
seconds, and a probe_count value of 8.

2-115

Socket Library Functions socket option TCP_NODELAY

socket option TCP_NODELAY

Disables the Nagle algorithm (RFC 896) which causes TCP to have, at most, one outstanding
unacknowledged small segment. By default, the Nagle algorithm is enabled, delaying small
segments of output data up to 200 ms so that they can be packaged into larger segments. If you
enable TCP_NODELAY, TCP sends small segments as soon as possible, without waiting for
acknowledgments from the receiver or for the 200 ms TCP fast timer to expire.

FORMAT

Status = setsockopt(VMS_Channel, IPPROTO_TCP, TCP_NODELAY, On, sizeof(*On));
unsigned int * On;

ARGUMENTS
On
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

A pointer to an integer buffer that specifies whether the TCP_NODELAY option is enabled or
disabled. A value of 0 disables TCP_NODELAY.

2-116

socket_perror() Socket Library Functions

socket_perror()

Formats and printsthe error code that is placed in the global variablessocket_errnoand vmserrno
when an error occurs in one of the other socket functions. The error message is printed on the
OpenVMS equivalent to the UNIX "stdout" device (normally SY SSOUTPUT), and is prefixed by
the specified string.

A typical use of socket_perror () might be the following:

if (connect(s, &sin, sizeof(sin)) < 0) {
socket _perror("connect failed");

exit(1);
}
FORMAT
(void) socket_perror(String);
char * String;;
ARGUMENTS
Sring
VMS Usage: arbitrary_string
type: ASCIZ string
access: read only
mechanism: by reference

A C-language string with information about the last call to fail. Thisis printed as a prefix to the
error message.

2-117

Socket Library Functions socket_read()

socket_read()

Reads messages from a socket. See also recv() and recvfrom(). This function is equivalent to a

recv() function called with Flags specified as zero. The length of the message received is returned

asthe status. If amessage istoo long to fit in the supplied buffer and the socket is type
SOCK_DGRAM, excess bytes are discarded.

If no messages are available at the socket, the receive call waits for a message to arrive, unless the

socket is non-blocking (see socket_ioctl()). In this case, astatus of -1 is returned, and the global
variable socket_errnoisset to EWOULDBLOCK.

FORMAT
int socket_read (short VMS_Channel, char *Buffer, int Size);

ARGUMENTS
VMS Channéd
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer
VMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The address of abuffer into which to place the data read.

Size
VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value
The length of the buffer specified by Buffer. The actual number of bytes read is returned in the
Satus.
RETURNS

If the socket_read() routine is successful, the count of the number of charactersreceived is
returned. A return value of 0 indicates an end-of-file condition; that is, the connection has been

closed. If an error occurs, avalue of -1 isreturned, and a more specific messageis returned in the
global variables socket_errno and vmserrno.

2-118

socket_write() Socket Library Functions

socket_write()

Writes a message to another socket. This function is equivalent to a send() function called with
Flags specified as zero.

This function can be used only when a socket has been connected with connect().

If no message spaceisavailable at the socket to hold the message to be transmitted, socket_write()
blocks unless the socket has been placed in non-blocking 1/0 mode viathe socket ioctl FIONBIO.
If the socket istype SOCK_DGRAM and the message is too long to pass through the underlying

protocol in asingle unit, the error EM SGSIZE is returned and the message is not transmitted.

FORMAT
int socket_write (short VMS_Channel, char * Buffer, int Size);

ARGUMENTS
VMS Channé
VMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer

VMS Usage: arbitrary
type: byte buffer
access: read only
mechanism: by reference

The address of abuffer containing the data to send.

Size

VMS Usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

The length of the buffer specified by Buffer.

RETURNS

If the socket_write() routine is successful, the count of the number of characters sent isreturned. If
an error occurs, avalue of -1 isreturned, and a more specific error messageis returned in the global
variables socket_errno and vmserrno.

2-119

Socket Library Functions vms_errno_string()

vms_errno_string()

Formats a string corresponding to the error code that is placed in socket_errno and vmserrno
when an error occurs in one of the other socket functions.

FORMAT
(char *) vms_errno_string();

RETURNS
Thevms errno_string() function returns a pointer to the string.

2-120

Chapter 3
$QIO0 Interface

The $QIO interface allows programmers to use more sophisticated programming techniques than
available with the socket library. Using the $QIO interface, you can perform fully asynchronous
1/O to the network and receive Asynchronous System Traps (A STs) when out-of-band data arrives
(similar to the UNIX SIGURG signal). In general, there is a one-to-one mapping between the
socket library functions and $QIO calls.

The $QI O interface returns an OpenVMS error code in the first word of the Input/Output Status
Block (10SB). If thelow hit of the OpenVMS error code is clear, an error has been returned by the
network. The OpenVMS error code is generated from the UNIX errno code by multiplying the
UNIX code by 8 (eight) and logical ORing it with 0x8000.

You can mix and match the socket library function and the $QIO calls. For example, you can use
socket() and connect() to establish a connection, then use 10$ SEND and |O$ RECEIVE to
send and receive dataon it.

Note! If more than one $QIO operation is pending on a socket at any one time, there is no guarantee
that the $QIO calls will complete in the order they are queued. In particular, if more than one
read or write operation is pending at any one time, the data may be interleaved. You do not
need to use multiple read or write operations concurrently on the same socket to increase
performance because of the network buffering.

The function codes for the MultiNet-specific $QIO functions are defined in the include file
multinet_root:[multinet.include.vms]inetiodef.h.

3-1

$QIO Interface 10$_ACCEPT

|I0$_ACCEPT

Extracts the first connection from the queue of pending connections on a socket, creates a new
socket with the same properties as the original socket, and associates an OpenVMS channel to the
new socket. |O$_ACCEPT isequivalent to the accept() socket library function.

Normally, instead of calling |O$_ACCEPT to wait for a connection to become available,

|0$ ACCEPT_WAIT isused. Thisallows your process to wait for the connection without
holding the extra network channel and tying up system resources. When the

I0$ ACCEPT_WAIT completes, it indicates that a connection is available. |0$ ACCEPT is
then called to accept it.

FORMAT

Status = SY S$QIOW(Efn, New_VMS_Channel, I0$_ACCEPT, IOSB, AstAdr, AstPrm, Address,
AddrLen, VMS_Channel, 0, 0, 0);

ARGUMENTS

3-2

New_VMS Channel
OpenVMS Usage: channél

type: word (signed)
access: read only
mechanism: by value

An OpenVMS channel to anewly-created INET device. Create this channel by using
SY S$ASSIGN to assign afresh channel to INETO: before issuing the |0$ ACCEPT call.
The accepted connection is accessed using this channel.

VMS Channéd

OpenVMS Usage: channé

type: word (signed)
access: read only
mechanism: by value

The OpenVMS channel to the INET: device on whichthe |O$_LISTEN call was performed.
After accepting the connection, this device remains avail able to accept new connections.

Address

OpenVMS Usage: special_structure

type: structur e defined below
access: write only

mechanism: by reference

An optional pointer to a structure that, following the completion of the|O$_ACCEPT call,
contains the address of the socket that made the connection. This structure is defined as follows:

I0$_ACCEPT $QIO Interface

struct {
unsi gned | ong Lengt h;
struct sockaddr Address;

s
AddrLen
OpenVMS Usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

The length of the buffer pointed to by the Address argument, in bytes. It must be at least 20 bytes.

3-3

$QIO Interface 10$_ACCEPT_WAIT

|I0$_ACCEPT_WAIT

Used to wait for an incoming connection without accepting it. This allows your process to wait for
the connection without holding the extra network channel and tying up system resources. When the
I0$ ACCEPT_WAIT call completes, it indicates that a connection is available. |O$ ACCEPT
isthen called to accept it.

The |O$_ACCEPT_WAIT cal takes no function-specific parameters.

FORMAT

Status = SY S$QIOW(Efn, VMS_Channel, |I0$_ACCEPT_WAIT, IOSB, AstAdr, AstPrm, 0, 0, 0,
0,0,0);

ARGUMENTS
VMS Channéd
OpenVMS Usage: channé
type: word (signed)
access: read only
mechanism: by value

The OpenVMS channel to the INET: device on whichthe |O$_LISTEN call was performed.

3-4

I0$_BIND $QIO Interface

10$_BIND

Assigns an address to an unnamed socket. When a socket is created with |O$ SOCKET, it exists
in aname space (address family) but has no assigned address. |O$ _BIND requests that the address
be assigned to the socket. IO$_BIND is equivalent to the bind() socket library function.

FORMAT

Status = SY S$QIOW(Efn, VMS_Channel, 10$ BIND, I0SB, AstAdr, AstPrm, Name, NameLen,
0,0,0,0);

ARGUMENTS
VMS Channé
OpenVMS Usage: channé
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Name

OpenVMS Usage: socket_address
type: struct sockaddr
access: read only
mechanism: by reference

The address to which the socket should be bound. The exact format of the Address argument is
determined by the domain in which the socket was created.

NameL en

OpenVMS Usage: socket_address length
type: longword (unsigned)
access: read only

mechanism: by value

The length of the Name argument, in bytes.

3-5

$QIO Interface 10$_CONNECT

|I0$_CONNECT

When used on a SOCK_STREAM socket, this function attempts to make a connection to another
socket. When used on a SOCK_DGRAM socket, this function permanently specifies the peer to
which datagrams are sent to and received from. The peer socket is specified by name, which isan
address in the communi cations domain of the socket. Each communications domain interprets the
name parameter in its own way. |0$_CONNECT is eguivaent to the connect() socket library
function.

If the address of the local socket has not yet been specified with 10$_BIND, the local addressis
also set to an unused port number when |O$ CONNECT is called.

FORMAT

Status = SY SEQIOW(Efn, VMS_Channel, I0$_CONNECT, 10SB, AstAdr, AstPrm, Name,
NamelLen, 0, O, 0, 0);

ARGUMENTS
VMS Channéd
OpenVMS Usage: channél
type: word (signed)
access: read only
mechanism: by value

3-6

A channel to the socket.

Name

OpenVMS Usage: socket_address
type: struct sockaddr
access: read only
mechanism: by reference

The address of the peer to which the socket should be connected. The exact format of the Address
argument is determined by the domain in which the socket was created.

NameLen

OpenVMS Usage: socket_address length
type: longword (unsigned)
access: read only

mechanism: by value

The length of the Name argument, in bytes.

I0$_GETPEERNAME $QIO Interface

|0$_GETPEERNAME

Returns the name of the peer connected to the specified socket. It is equivalent to the
getpeer name() socket library function.

FORMAT

Status = SY S$QIOW(Efn, VMS_Channel, |0$_GETPEERNAME, 0SB, AstAdr, AstPrm,
Address, AddrLen, 0, 0, O, 0);

ARGUMENTS
VMS Channé
OpenVMS Usage: channé
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Address

OpenVMS Usage: socket_address
type: struct sockaddr
access: write only
mechanism: by reference

A result parameter filled in with the address of the peer, as known to the communications layer.
The exact format of the Address argument is determined by the domain in which the
communication is occurring.

AddrLen

OpenVMS Usage: socket_address _length
type: longword (unsigned)
access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it containsthe
actual length, in bytes, of the address returned.

3-7

$QIO Interface 10$_GETSOCKNAME

|I0$_GETSOCKNAME

Returns the current name of the specified socket. Equivalent to the getsockname() socket library
function.

FORMAT

Status = SY SEQIOW(Efn, VMS_Channel, I0$_GETSOCKNAME, IOSB, AstAdr, AstPrm,
Address, AddrLen, 0, 0, 0, 0);

ARGUMENTS
VMS Channéd
OpenVMS Usage: channé
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Address

OpenVMS Usage: socket_address
type: struct sockaddr
access: write only
mechanism: by reference

A result parameter filled in with the address of the local socket, as known to the communications
layer. The exact format of the Address argument is determined by the domain in which the
communication is occurring.

AddrLen

OpenVMS Usage: socket_address _|length
type: longword (unsigned)
access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by Address, in bytes. On return, it containsthe
actual length, in bytes, of the address returned.

3-8

I0$_GETSOCKOPT $QIO Interface

|I0$ GETSOCKOPT

Retrieves options associated with a socket. It is equivalent to the getsockopt() library routine.
Options can exist at multiple protocol levels; however, they are always present at the uppermost
socket level.

When manipulating socket options, you must specify the level at which the option resides and the
name of the option. To manipulate options at the socket level, specify level as SOL_SOCKET. To
manipulate options at any other level, specify the protocol number of the appropriate protocol
controlling the option. For example, to indicate that an option isto be interpreted by the TCP
protocol, set L evel to the protocol number of TCP, as determined by calling getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol
module for interpretation. The include file multinet_root:[multinet.include.sys|socket.h contains
definitions for socket-level options. Options at other protocol levels vary in format and name.

For more information on what socket options may be retrieved with |0$_GET SOCK OPT, seethe
socket option sections.

FORMAT

Status = SY S$QIOW(Efn, VMS_Channel, |0$_GETSOCKOFT, |OSB, AstAdr, AstPrm, Level,
OptName, OptVal, OptLen, O, 0);

ARGUMENTS
VMS Channé
OpenVMS Usage: channé
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Level

OpenVMS Usage: option_level

type: longword (unsigned)
access: read only
mechanism: by value

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET or a
protocol number as returned by getprotoent().

OptName

OpenVMS Usage: option_name

type: longword (unsigned)
access: read only
mechanism: by value

3-9

$QIO Interface 10$_GETSOCKOPT

The option that isto be manipulated.

OptVal

OpenVMS Usage: dependent on OptName
type: byte buffer

access: write only

mechanism: by reference

A pointer to a buffer that isto receive the current value of the option. The format of this buffer is
dependent on the option requested.

OptLen

OpenVMS Usage: option_length

type: longword (unsigned)
access: modify

mechanism: by reference

On entry, contains the length of the space pointed to by OptVal, in bytes. On return, it contains the
actual length, in bytes, of the option returned.

3-10

I0$_IOCTL $QIO Interface

|0$_IOCTL

Performs a variety of functions on the network; in particular, it manipulates socket characteristics,
routing tables, ARP tables, and interface characteristics. ThelO$_IOCTL call isequivaent to the
socket_ioctl() library routine.

A 10$_IOCTL request has encoded in it whether the argument is an input or output parameter, and
the size of the argument, in bytes. Macro and define statements used in specifying an 10$ |OCTL
request are located in the file multinet_root:[multinet.include.sys]ioctl.h.

FORMAT
Status = SY S$QIOW(Efn, VMS_Channel, IO$_|OCTL, IOSB, AstAdr, AstPrm, Request, ArgP, 0,
0,0,0);

ARGUMENTS
VMS Channé
OpenVMS Usage: channé
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Request

OpenVMS Usage: ioctl_request

type: longword (unsigned)
access: read only
mechanism: by value

Which 10$ _IOCTL function to perform. The available | O$ _|OCTL functions are documented in
the socket ioctl sections.

ArgP

OpenVMS Usage: arbitrary

type: byte buffer

access: read, write, or modify depending on Request
mechanism: by reference

A pointer to a buffer whose format and function is dependent on the Request specified.

3-11

$QIO Interface 10$_LISTEN

10$_LISTEN

Specifies the number of incoming connections that may be queued while waiting to be accepted.
This backlog must be specified before accepting a connection on a socket. The IO$ LISTEN
function applies only to sockets of type SOCK_STREAM. ThelO$_LISTEN call isequivalent to
the listen() socket library function.

FORMAT

Status = SY S$QIOW(Efn, VMS_Channel, I0$_LISTEN, 0SB, AstAdr, AstPrm, BackLog, 0, 0,
0,0,0);

ARGUMENTS
VMS Channéd
OpenVMS Usage: channé
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Backlog

OpenVMS Usage: connection_backlog
type: longword (unsigned)
access: read only
mechanism: by value

Defines the maximum length of the queue of pending connections. If a connection request arrives
when the queueis full, the request isignored. The backlog queue length islimited to 5.

3-12

|0$_RECEIVE (10$_READVBLK) $QIO Interface

|0$_RECEIVE (10$_READVBLK)

Receives messages from a socket. This call is equivalent to the recvfrom(), recv(), and socket
read() socket library functions.

Thelength of the message received is returned in the second and third word of the 1/0O Status Block
(IOSB). A count of 0 indicates an end-of-file condition; that is, the connection has been closed. If a
message is too long to fit in the supplied buffer and the socket is type SOCK_DGRAM, excess
bytes are discarded.

If no messages are available at the socket, the | O$_RECEIVE call waits for a message to arrive,
unless the socket is nonblocking (see socket_ioctl()).

FORMAT

Status = SY S$QIOW(Efn, VMS_Channel, I0$_RECEIVE, 0SB, AstAdr, AstPrm, Buffer, Size,
Flags, From, FromLen, 0);

ARGUMENTS
VMS Channé
OpenVMS Usage: channé
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer

OpenVMS Usage: arbitrary
type: byte buffer
access: write only
mechanism: by reference

The address of abuffer in which to place the data read.

Size

OpenVMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The length of the buffer specified by Buffer. The actual number of bytes read is returned in the
Satus.

3-13

$QIO Interface 10$_RECEIVE (I0$_READVBLK)

Flags

OpenVMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Control information that affectsthe |O$ _RECEIVE call. The Flags argument is formed by ORing
one or more of the following values:

#define MSG OOB O0Ox1 /* process out-of-band data */
#define MSG PEEK O0x2 /* peek at incom ng nmessage */

The M SG_OOB flag causes |0$_RECEIVE to read any out-of-band data that has arrived on the
socket.

The MSG_PEEK flag causes |0$_RECEIVE to read the data present in the socket without
removing the data. This allows the caller to view the data, but leavesit in the socket for future
|O$_RECEIVE calls.

From

OpenVMS Usage: special_structure

type: structure defined below
access: write only

mechanism: by reference

An optional pointer to astructure that, following the completion of the |O$ RECEIVE, contains
the address of the socket that sent the packet. This structure is defined as follows:

struct {
unsi gned short Length;
struct sockaddr Address;

H
FromLen
OpenVMS Usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

The length of the buffer pointed to by the From argument, in bytes. It must be at least 18 bytes.

3-14

IO$_SELECT $QIO Interface

|0$_SELECT

Examines the specified channel to seeif it isready for reading, ready for writing, or has an
exception condition pending (the presence of out-of-band datais an exception condition).

The UNIX select() system call can be emulated by posting multiple |O$_SELECT callson
different channels.

Note! 10$_SELECT is only useful for channels assigned to the INET: device. It cannot be used for any
other VMS 1/O device.

FORMAT

Status = SY S$QIOW(Efn, VMS_Channel, 10$_SELECT, I0SB, AstAdr, AstPrm, Modes, 0, 0, O,
0, 0);

ARGUMENTS
VMS Channdl
OpenVMS Usage: channel
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Modes

OpenVMS Usage: mask_longword
type: longword (unsigned)
access: modify

mechanism: by reference

On input, the M odes argument is a bit mask of one or more of the following values:

#defi ne SELECT_DONTWAI T (1<<0)
#def i ne SELECT_READABLE (1<<1)
#define SELECT WRI TEABLE (1<<2)
#defi ne SELECT_ EXCEPTI ON (1<<3)

If the SELECT_DONTWAIT bitis set, the [O$_SELECT call will complete immediately,
whether or not the socket is ready for any 1/O operations. If thisbit is not set, the |O$ SELECT
call will wait until the socket is ready to perform one of the requested operations.

If the SELECT_READABLE hitisset, the |O$_SELECT call will check if the socket is ready
for reading or a connecting has been received and is ready to be accepted.

If the SELECT_WRITEABLE bitisset, the |O$_SELECT call will check if the socket is ready
for writing or a connect request has been completed.

3-15

$QIO0 Interface 10$_SELECT

If the SELECT_EXCEPTION bit isset, the |lO$_SELECT call will check if the socket has out-
of-band data ready to read.

On output, the M odes argument is a bit mask that indicates which operations the socket isready to
perform. If the SELECT_DONTWAIT operation was specified, the Modes value may be zero; if
SELECT_DONTWAIT isnot specified, then one or more of the SELECT_READABLE,
SELECT_WRITABLE, or SELECT_EXCEPTION bits will be set.

3-16

I0$_SEND $QIO Interface

10$_SEND

Transmits a message to another socket. It is equivalent to the sendto(), send(), and socket_write()
socket library functions.

If no message spaceis available at the socket to hold the message to be transmitted, 10$_SEND
blocks unless the socket has been placed in non-blocking I/0 mode vial O$ |OCTL. If the
message is too long to pass through the underlying protocol in a single unit, the error EM SGSIZE
is returned and the message is not transmitted.

FORMAT

Status = SY S$QIOW(Efn, VMS_Channel, 10$_SEND, 10SB, AstAdr, AstPrm, Buffer, Size,
Flags, To, ToLen, 0);

ARGUMENTS
VMS Channé
OpenVMS Usage: channé
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Buffer

OpenVMS Usage: arbitrary
type: byte buffer
access: read only
mechanism: by reference

The address of abuffer containing the data to send.

Size

OpenVMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The length of the buffer specified by Buffer.

Flags

OpenVMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

3-17

$QIO Interface 10$_SEND

3-18

Control information that affectsthe |O$_SEND call. The Flags argument can be zero or the
following:

#def i ne M5G OOB Ox1 /* process out-of-band data */

The MSG_OOB flag causes | O$_SEND to send out-of-band data on sockets that support this
operation (such as SOCK_STREAM).

To

OpenVMS Usage: socket_address
type: struct sockaddr
access: read only
mechanism: by reference

An optional pointer to the address to which the packet should be transmitted. The exact format of
the Address argument is determined by the domain in which the communication is occurring.

ToLen

OpenVMS Usage: socket_address length
type: longword (unsigned)
access: read only

mechanism: by value

An optional argument that contains the length of the address pointed to by the To argument.

I0$_SENSEMODE $QIO Interface

I0$_SENSEMODE

Reads the active connections status and returns status information for all of the active and listening
connections.

FORMAT

Status = SY S$QIO(efn, chan, I0$_SENSEMODE, iosh, astadr, astprm, buffer, address, conn_type,
0,0,0)

ARGUMENTS
pl=buffer
OpenVMS Usage: vector _byte unsigned
type: byte (unsigned)
access: write only
mechanism: by reference

Optional address of the 8-byte device characteristics buffer. Datareturned is: the device class
(DC$_SCOM) in thefirst byte, the device type (0) in the second byte, and the default buffer size,
which is the maximum datagram size, in the high-order word of the first longword.
|0$_SENSEM ODE returns the second longword as 0.

p2=address

OpenVMS Usage: vector_word_unsigned
type: word (unsigned)
access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive the status information on the active connections.

P3=value

OpenVMS Usage: Longword_unsigned
type: Longword (unsigned)
access: Read only
mechanism: by value

0 to get information about TCP connections, non-zero to get information about UDP connections.

Figure 3-1 shows the 22 bytes of information returned for each connection.

Protocol type Word valueis 4 for INETDRIVER stream sockets, and 5 for
BGDRIVER stream sockets.

Unit number Word valueisthe INETDRIVER, or BGDRIVER device unit number
for the connection.

3-19

$QIO Interface 10$_SENSEMODE

Receive queue Word valueisthe number of bytesreceived from the peer waiting to be
delivered to the user through the I0$_READVBLK function.

Send queue Word value is the number of bytes waiting to be transmitted to or to be
acknowledged by the peer.

Local internet address | Longword value isthelocal internet address (or O if the connection is
not open and no local internet address was specified for the
connection).

Local port number Word value isthelocal port number.

Peer internet address Longword value isthe peer’sinternet address (or O if the connection is
not open and no peer internet address was specified for the
connection).

Peer port number Word valueisthe peer’s port number, or O if the connection is not open
and you did not specify a peer port number for the connection.

TCP state Word value is the Transmission Control Protocol connection state
mask. See the Table 3-3 description for the mask value definitions.

Figure3-1 Connection SatusInformation

+3 +2 +1 H]

Frotocal Type ull

Uinit Mumber +2

Receive Eﬂueue +4

Sendé@ueue +

‘Local Interpet Addresaé +5
| Local F'l:ur’[iNumI:uer +12
Feer Internet Address +14
| Feer F'DHENuml:uer +15
TCP State +20

3-20

I0$_SENSEMODE $QIO Interface

Status

SS$ BUFFEROVF

Buffer too small for al connections

Truncated buffer returned

Status information returned

SS$ DEVINACT Device not active
Contact system manager why MultiNet (or INETDRIVER) not started
SS$_NORMAL Success

The byte count for the status information buffer is returned in the high-order word of the first

longword of the I/O status block. This may be less than the bytes requested. See Figure 3-2 for
more information.

The size in bytes of each connection’s record (22 bytes) is returned in the low order word of the
second longword of the 1/O status block.

The total number of active connections s returned in the high-order word of the second longword
of the /O status block. This can be greater than the number of reported connections if the buffer is

full.

Figure 3-2

1/0 Satus Block

Byte Count

mtatus Code

Mumber of Connections

Bytes/Hecord=22

Table3-3 TCP SateMask Values

Mask Mask Mask

Value | Sate Value | State Value | State

1 LISTEN 16 FIN-WAIT-1 256 LAST-ACK
2 SYN-SENT 32 FIN-WAIT-2 512 TIME-WAIT
4 SYN-RECEIVED 64 CLOSE-WAIT 1024 CLOSED

3-21

$QIO Interface 10$_SENSEMODE

Table3-3 TCP SateMask Values

M ask M ask M ask
Value State Value | Sate Value | Sate
8 ESTABLISHED 128 CLOSING

3-22

|0$_SENSEMODE | IO$M_CTRL $QIO Interface

|I0$_SENSEMODE | I0$M_CTRL

SS$ BUFFEROVF

Buffer too small for all characteristics
Truncated characteristics buffer is returned

SS$ DEVINACT Device not active
Contact system manager why MultiNet (or TCPDRIVER) not started
SS$ NORMAL Success

Characteristics returned

The byte count for the characteristics buffer is returned in the high-order word of the first longword
of the I/O status block. This may be less than the bytes requested. The number of bytesin the
receive queue isreturned in the low order word of the second longword in the I/O status block. The
number of bytesin the read queueis returned in the high-order word of the second longword in the
1/O status block. Figure Figure 3-4 shows the 1/0O Status Block.

Figure3-4 1/0O Satus Block

Byte Count otatus Code

Bytes in Send Clueue Bytes in Heceive Clueue

Note! You can use the SYS$GETDVI system service to obtain the local port number, peer port
number, and peer internet address. The DEVDEPEND field stores the local port number (low
order word) and peer port number (high-order word). The DEVDEPEND?2 field stores the peer

internet address.

Performs the following functions:

* Reads network device information

* Readstherouting table

¢ Readsthe ARP information

¢ Readsthe IP SNMP information

* Readsthe ICMP SNMP information
* Readsthe TCP SNMP information

¢ Readsthe UDP SNMP information

3-23

$QIO Interface 10$_SENSEMODE | I0$M_CTRL

FORMAT

Status = SY S$QIO(efn, chan, I0$ SENSEMODE | IO$M_CTRL, iosh, astadr, astprm, buffer,
address, function, line-id, 0, 0)

ARGUMENTS
pl=buffer
OpenVMS Usage: vector _byte unsigned
type: byte (unsigned)
access: write only
mechanism: by reference

Optional address of the 8-byte device characteristics buffer. The data returned is the device class
(DC$_SCOM) in thefirst byte, the device type (0) in the second byte, and the default buffer size (0)
in the high-order word of the first longword. The second longword is returned as O.

p2=address

OpenVMS Usage: vector_word_unsigned
type: Word (unsigned)
access: write only

mechanism: by descriptor

Address of the descriptor for the buffer to receive theinformation. The format of the buffer depends
on the information requested. Each buffer format is described separately in the section that follows.

If bit 12 (mask 4096) is set in the parameter identifier (PID), the PID is followed by a counted
string. If bit 12 is clear, the PID isfollowed by alongword value. While MultiNet currently never
returns a counted string for a parameter, this may change in the future.

p3=function

OpenVMS Usage: L ongword-unsigned
type: Longword (unsigned)
access: read only

mechanism: by value

Code that designates the function.

The function codes are shown in Table 3-5.

Table3-5 P3 Function Codes

Code | Function

1 P1 of the QIO is not used
2 VMS descriptor of the space to put the return information
3 10

3-24

|0$_SENSEMODE | IO$M_CTRL $QIO Interface

Table3-5 P3Function Codes (Continued)

Code | Function

4 Not used

5 Not used

6 Not used

7 Read UDP SNMP counters

8 Read routing table

10 Read interface throughput information
p4=line-id
OpenVMS Usage: L ongword-unsigned
type: Longword (unsigned)
access: read only
mechanism: by value

Specify this argument only if you are reading a network device's ARP table function.

Reading Network Device Information

Use |0$_SENSEMODE | IO$M_CTRL with p3=1 to read network device information. The
information returned in the buffer (specified by p2=address) can consist of multiple records. Each
record consists of nine longwords, and one record is returned for each device.

When you read network device information, the datain each record is returned in the order
presented below. All are longword values.

Lineid (see the description of the line-id argument)

Line'slocal internet address

1
2
3 | Line€'sinternet address network mask
4

Line's maximum transmission unit (MTU) in the low-order word, and the line flagsin the
high-order word

Number of packets transmitted (includes ARP packets for Ethernet lines)

Number of transmit errors

Number of packets received (includes ARP and trailer packets for Ethernet lines)

Number of receive errors

© | 0| N| O W,

Number of received packets discarded due to insufficient buffer space

3-25

$QIO Interface

I0$_SENSEMODE | IO$M_CTRL

Reading the Routing Table

Use |0$_SENSEMODE | I0$M_CTRL with p3=8 to read the routing table. The information
returned in the buffer (specified by p2=address) can consist of multiple records. Each record
consists of five longwords, and one record is returned for each table entry.

The p3=8 function returns full routing information and is a superset of p3=2, which was retained
for backwards compatibility with existing programs. p3=2 and p3=28 return the same table of
routing entries, in the following order, except that p3=2 does not return items 7 and 8 (address

mask and Path MTU):

1 | Destination

internet address.

Destination host or network to which the datagram is bound. Returned
asalongword value.

2 | Gateway

internet address.

Internet address to which the datagram for this route is transmitted.
Returned as alongword value.

3 | Flags.

Routing table entry’s flag bits. Returned as aword value:

Mask 1, name GATEWAY, if set, the routeisto a gateway (the datagram
is sent to the gateway internet address). If clear, the routeis adirect
route.

Mask 2, name HOST, if set, the route is for a host. If clear, therouteis
for anetwork.

Mask 4, name DY NAMIC, if set, the route was created by a received
ICMP redirect message.

Mask 8, name AUTOMATIC, if set, this route was added by
MULTINET_RAPD process and will be modified or remoted by that
process as appropriate.

Mask 16, name LOCKED, if set, the route cannot be changed by an
ICMP redirect message.

Mask 32, name INTERFACE, if set, the route is for a network interface.

Mask 64, name DELETED, if set, the route is marked for deletion (it is
deleted when the reference count reaches 0).

Mask 128, name POSSDOWN, if set, the route is marked as possibly
down.

4 | Reference
count.

Number of connections currently using the route. Returned as aword
value,

5 | Usecount.

Number of times the route has been used for outgoing traffic. Returned
as alongword value.

3-26

|0$_SENSEMODE | IO$M_CTRL $QIO Interface

6 | LinelD.

Lineidentification for the network device used to transmit the datagram
to the destination. See the description of the line-id argument later in
this section for the line ID codes. Table 3-6 shows the lineidentification
values.

7 | Address mask.

value.

Address mask for the destination address. Returned as alongword

8 | PahMTU.

Path maximum transmission unit. Returned as alongword value.

Table3-6 LinelD Values

LinelD | LinelD Value LinelD | LinelD Value LinelD | LinelD Value
LO-0 X 00000001 DN-n AX00nn0241 PD-n AX00nn0042
PSI-n AX00nn0006 PPP-n AX00nn0341

SL-n AX00nn0141 SE-n AX00nn0402

Note!

The I/O status block (iosb) returns routing table entry size information for the p3=8 function to

assist in diagnosing buffer overflow situations. See the Status section for details.

Reading Interface Throughput Information

Use |0$ SENSEMODE | I0$M_CTRL with p3=10 to read network device information. The
information returned in the buffer (specified by p2=descriptor) can consist of multiple records.
Each record consists of nine longwords, and one record is returned for each device.

When you read network device information, the datain each record is returned in the order
presented below. All are longword values.

Table3-7 QIO Parameters

Code

Function

P1 of the QIO is not used

isaVMS descriptor of the space to put the return information

10

Not used

Not used

1
2
3
4
5
6

Not used

3-27

$QIO Interface 10$_SENSEMODE | I0$M_CTRL

Thereturned dataisin the following format (all values are integers):

LinelD

Average Out Bytes (for the last 6 seconds)

Average Out Packets

1
2
3 | Average In Bytes
4
5

Average |n Packets

Reading the ARP Table Function
Use 10$ SENSEMODE | IO$M_CTRL with function=3 to read a network device's ARP table
function. The information returned in the buffer (specified by p2=address) depends on thelineid
specified in line-id.
Theline-id argument isthe lineid and is alongword value. The least significant byte of thelineid

isthe major device type code. The next byte is the device type subcode. The next byte isthe
controller unit number. The most significant byte isignored.

Theinformation returned in the buffer can consist of multiple records. Each record consists of 12
bytes, and one record is returned for each ARP table entry.

When reading a table function, the datain each record is returned in the following order:

1 | Internet address. | Returned as alongword value.

2 | Physical address. | Returned as a 6 byte value.

3 | Hags. Returned as aword value.
The ARP table entry’s flag bits are shown in Table 3-8.

Table3-8 ARP Table Entry Flag Bits

Mask | Name Description

1 PERMANENT | If set, the entry can only be removed by aNETCU REMOVE ARP
command and if RARP is enabled, the local host respondsiif a
RARP request is received for this address. If clear, the entry can be
removed if not used within a short period.

2 PUBLISH If set, thelocal host responds to ARP requests for the internet
address (this bit is usually only set for the local hosts's entry). If
clear, thelocal host does not respond to received ARP requests for
this address.

3-28

|0$_SENSEMODE | IO$M_CTRL $QIO Interface

Table3-8 ARP Table Entry Flag Bits

Mask | Name Description
4 LOCKED If set, the physical address cannot be changed by received ARP
requests/replies.
4096 LASTUSED If set, last reference to entry was a use rather than an update.
8192 CONFNEED If set, confirmation needed on next use.
16384 | CONFPEND If set, confirmation pending.
32768 | RESOLVED If set, the physical addressisvalid.
Status

SS$_ BADPARAM

Code specified in function argument invalid.

SS$ BUFFEROVF

Buffer too small for all information

Truncated buffer returned.

SS$ DEVINACT Device not active
Contact your system manager to determine why MultiNet was not
started.

SS$ NORMAL Success

Requested information returned.

SS$ NOSUCHDEV

Line identification specified in arp argument does not exist.

The byte count for the information or counters buffer is returned in the high-order word of the first
longword of the I/O status block. This can be less than the bytes requested.

* For the p3=2 routing table function, in the second longword of the 1/O status block, bit O is
always set, bit 1 is set if the forwarding capability is enabled, and bit 2 is set if ARP replies
for non-local internet addresses are enabled.

* For the p3=8 routing table function, the IOSB contains the following:

Status Code

SS$ NORMAL or SS$ BUFFEROVF

Transfer Byte Count

Number of bytes of returned information

Entry Size

Number of bytesin each entry

Number of Entries

Number of entriesin the routing table

If the status is SS$_BUFFEROVF, you can determine the number of routing entries actually

3-29

$QIO Interface 10$_SENSEMODE | I0$M_CTRL

returned by calculating (Transfer Byte Count) DIV (Entry Size) and comparing that with the
Number of Entries value. Be sure to check the Entry Sizein the 1O status block. Later versions of
MultiNet may return more information for each entry, which will return alarger Entry Size. Any
additional information to be returned in the future will be added to the end of the returned entry.

Reading the IP SNMP Counters Function
Use 10$ SENSEMODE | I0$M_CTRL with function=4 to read the IP SNMP counters.

The data returned is an array of longwords in the following format:

¢ Indicates whether or not this entity is acting as an | P router.

* Thedefault valueinserted in the | P header's time-to-live field.

¢ Thetotal number of input datagrams received.

* The number of input datagrams discarded due to errorsin their |P headers.

* The number of input datagrams discarded because the IP addressin their |P header's
destination field was not a valid address to be received at this entity.

¢ Thenumber of IP datagrams for which this entity was not their final destination, and for
which forwarding to another entity was required.

* The number of datagrams received but discarded because of an unknown or unsupported
protocol.

* The number of input datagrams received but discarded for reasons other than errors.

¢ Thetotal number of input datagrams successfully delivered to IP user protocols, including
ICMP.

¢ Thetotal number of IP datagrams that local |P user protocols (including ICMP) supplied to
IPin request for transmission.

* The number of output |P datagrams that were discarded for reasons other than errors.

* The number of |P datagrams discarded because no route could be found to transmit them to
their destination.

* The maximum number of seconds that received fragments are held while they are awaiting
reassembly at this entity.

* The number of IP fragments received that needed to be reassembled at this entity.

¢ The number of |P datagrams successfully reassembled.

* The number of failures detected by the IP reassembly algorithm.

* The number of |P datagrams that have been successfully fragmented at this entity.

* Thenumber of IP datagrams that have been discarded at this entity because they could not be
fragmented.
* Thenumber of |P datagrams that have been created as aresult of fragmentation at this entity.

Reading the ICMP SNMP Counters Function
Use 10$_SENSEMODE | I0$M_CTRL with function=5 to read the ICMP SNMP counters.

The datareturned is an array of longwordsin the following format:

* Thetotal number of ICMP messages received.

3-30

|0$_SENSEMODE | IO$M_CTRL $QIO Interface

The number of ICMP messages received but determined as having |CMP-specific errors.
The number of ICMP Destination Unreachable messages received.
The number of ICMP Time Exceeded messages received.

The number of ICMP Parameter Problem messages received.

The number of ICMP Source Quench messages received.

The number of ICMP Redirect messages received.

The number of ICMP Echo (request) messages received.

The number of ICMP Echo reply messages received.

The number of ICMP Timestamp (request) messages received.

The number of ICMP Timestamp Reply messages received.

The number of ICMP Address Mask Request messages received.

The number of ICMP Address Mask Reply messages received.

The total number of ICMP messages that this entity attempted to send.
The number of ICMP messages that this entity did not send because of ICMP-related
problems.

The number of ICMP Destination Unreachable messages sent.

The number of ICMP Time Exceeded messages sent.

The number of ICMP Parameter Problem messages sent.

The number of ICMP Source Quench messages sent.

The number of ICMP Redirect messages sent.

The number of ICMP Echo (request) messages sent.

The number of ICMP Echo reply messages sent.

The number of ICMP Timestamp (request) messages sent.

The number of ICMP Timestamp Reply messages sent.

The number of ICMP Address Mask Request messages sent.

The number of ICMP Address Mask Reply messages sent.

3-31

$QIO Interface 10$_SENSEMODE | I0$M_CTRL

Reading the TCP SNMP Counters Function
Use |0O$_SENSEMODE | I0$M_CTRL with function=6 to read TCP SNMP counters.

The data returned is an array of longwords in the following format:

The algorithm used to determine the timeout value for retransmitting unacknowledged
octets.

The minimum value (measured in milliseconds) permitted by a TCP implementation for the
retransmission timeout.

The maximum value (measured in milliseconds) permitted by a TCP implementation for the
retransmission timeout.

The limit on the total number of TCP connections supported.

The number of times TCP connections have made a transition to the SYN-SENT state from
the CLOSED state.

The number of times TCP connections have made a direct transition to the SYN-REVD state
from the LISTEN state.

The number of failed connection attempts.

The number of resets that have occurred.

The number of TCP connections having a current state of either ESTABLISHED or
CLOSE-WAIT.

The total number of segments received.

The total number of segments sent.

The total number of segments retransmitted.

Reading the UDP SNMP Counters Function
Use 10$ SENSEMODE | IO$M_CTRL with function=7 to read the UDP SNMP counters.

The data returned is an array of longwords in the following format:

3-32

The total number of IDP datagrams delivered to UDP users.

The total number of received UDP datagrams for which there was not an application at the
destination port.

The number of received UDP datagrams that could not be delivered for reasons other than
the lack of an application at the destination port.

The total number of UDP datagrams sent from this entity.

I0$_SETCHAR $QIO Interface

|I0$_SETCHAR

Sets specia characteristics that control the operation of the INET: device, rather than the socket
attached to it. These operations are normally used by only the MULTINET_SERVER process to
hand off a connection to a process that it creates to handle the connection.

FORMAT

Status = SY S$QIOW/(Efn, VMS_Channel, I0$_SETCHAR, 0SB, AstAdr, AstPrm, Flags, 0, 0, 0,
0,0);

ARGUMENTS
VMS Channé
OpenVMS Usage: channé
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Flags

OpenVMS Usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

A bit mask of one or more of the following values. If IO$_SETCHAR isnot called, al options are
set to OFF.

#def i ne SETCHAR PERVANENT (1<<0)
#def i ne SETCHAR SHAREABLE (1<<1)
#defi ne SETCHAR HANDOFF (1<<2)

If the SETCHAR_PERMANENT hit is set when the last channel to the socket deviceis
deassigned using the SY SSBDASSGN system service, the socket is not closed and the socket device
is not deleted. Normally, the last deassign closes the socket. If this bit has been set, it must be
explicitly cleared before the socket can be deleted.

If the SETCHAR_SHAREABLE bit is set, the socket becomes a shareabl e device and any process
can assign a channel to it.

If the SETCHAR_HANDOFF hit is set, the socket is not closed and the socket device is not
deleted when the last channel to the socket deviceis deassigned. After this occurs, the socket
revertsto anormal socket, and if a new channel is assigned and deassigned, the socket is closed.
The SETCHAR_HANDOFF bitisasafer version of the SETCHAR_PERMANENT hit because
it allows a single hand-off to another process without the risk of a socket getting permanently stuck
on your system.

3-33

$QIO Interface 10$_SETMODE|IO$M_ATTNAST

|I0$_SETMODE|IO$M_ATTNAST

Enables an AST to be delivered to your process when out-of-band data arrives on a socket. Thisis
similar to the UNIX 4.3BSD SIGURG signal being delivered. You cannot enable the delivery of
the AST through the socket library functions.

After the AST isdelivered, you must explicitly reenableit using thiscall if you want the AST to be
delivered when future out-of-band data arrives.

FORMAT
Status = SY S$QIOW(Efn, VMS_Channel, |0$_SETMODE|IO$M_ATTNAST, 0SB, AstAdr,
AstPrm, Routine, Parameter, 0, O, O, 0);

ARGUMENTS
Routine
OpenVMS Usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

The address of the AST routine to call when out-of-band data arrives on the socket. To disable AST
delivery, set Routineto 0.

Parameter

OpenVMS Usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

The argument with which to call the AST routine.

3-34

I0$_SETSOCKOPT $QIO Interface

|I0$ SETSOCKOPT

Mani pulates options associated with a socket. It is equivalent to the setsockopt() socket library
function. Options may exist at multiple protocol levels; however, they are always present at the
uppermost socket level.

When manipulating socket options, you must specify the level at which the option resides and the
name of the option. To manipulate options at the socket level, specify Level as SOL_SOCKET.
To manipulate options at any other level, specify the protocol number of the appropriate protocol
controlling the option. For example, to indicate that an option isto be interpreted by the TCP
protocol, set L evel to the protocol number of TCP; see getprotobyname().

OptName and any specified options are passed without modification to the appropriate protocol
module for interpretation. The include file multinet_root:[multinet.include.sys|socket.h contains
definitions for socket-level options. Options at other protocol levels vary in format and name.

FORMAT

Status = SY S$QIOW(Efn, VMS_Channel, |0$_SETSOCKOPT, 0SB, AstAdr, AstPrm, Level,
OptName, OptVal, OptLen, O, 0);

ARGUMENTS
VMS Channé
OpenVMS Usage: channé
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

Level

OpenVMS Usage: option_level

type: longword (unsigned)
access: read only
mechanism: by value

The protocol level at which the option will be manipulated. Specify Level as SOL_SOCKET, or a
protocol number as returned by getprotobyname).

OptName

OpenVMS Usage: option_name

type: longword (unsigned)
access: read only
mechanism: by value

The option that is to be manipulated. For a description of each of the valid options for |0$_
SETSOCKOPT, seethe socket option sections.

3-35

$QIO Interface 10$_SETSOCKOPT

OptVal

OpenVMS Usage: dependent on OptName
type: byte buffer

access: read only

mechanism: by reference

A pointer to abuffer that contains the new value of the option. The format of this buffer dependson
the option requested.

OptLen

OpenVMS Usage: option_length

type: longword (unsigned)
access: read only
mechanism: by value

The length of the buffer pointed to by OptVal.

3-36

I0$_SHUTDOWN $QIO Interface

10$_SHUTDOWN

Shuts down al or part of afull-duplex connection on the socket associated with VM S_Channel.
This function is usually used to signal an end-of-file to the peer without closing the socket itself,
which would prevent further data from being received. It is equivalent to the shutdown() socket
library function.

FORMAT

Status = SY S$QIOW(Efn, VMS_Channel, 10$_SHUTDOWN, |OSB, AstAdr, AstPrm, How, 0, 0,
0,0,0);

ARGUMENTS
VMS Channé
OpenVMS Usage: channé
type: word (signed)
access: read only
mechanism: by value

A channel to the socket.

How

OpenVMS Usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Controls which part of the full-duplex connection to shut down, as follows: if How is 0, further
receive operations are disallowed; if How is 1, further send operations are disallowed; if How is 2,
further send and receive operations are disallowed.

3-37

$QIO Interface 10$_SOCKET

|I0$_SOCKET

Creates an end point for communication and returns an OpenVMS channel that describes the end
point. It is equivalent to the socket() socket library function.

Beforeissuing the |O$_SOCKET call, an OpenVMS channel must first be assigned to the INETO:
device to get anew channel to the network.

FORMAT
Status = SY SSQIOW(Efn, VMS_Channel, 10$_SOCKET, IOSB, AstAdr, AstPrm,
Address_Family, Type, Protocol, 0, 0, 0);

ARGUMENTS

Address Family
OpenVMS Usage: address family

type: longword (unsigned)
access: read only
mechanism: by value

An address family with which addresses specified in later operations using the socket will be
interpreted. The following formats are currently supported; they are defined in the include file
multinet_root:[multinet.include.sys]socket.h:

AF_INET Internet (TCP/IP) addresses

AF _PUP Xerox PUP addresses

AF _CHAOS CHAQOSnet addresses

Type

OpenVMS Usage: socket_type

type: longword (unsigned)
access: read only
mechanism: by value

The semantics of communication using the created socket. The following types are currently
defined:

SOCK_STREAM SOCK_DGRAM SOCK_RAW

A SOCK_STREAM socket provides a sequenced, reliable, two-way connection-oriented byte
stream with an out-of-band data transmission mechanism. A SOCK_DGRAM socket supports
communication by connectionless, unreliable messages of afixed (typically small) maximum
length. SOCK _RAW sockets provide access to internal network interfaces. The type
SOCK_RAW isavailable only to users with SY SPRV privilege.

3-38

I0$_SOCKET $QIO Interface

The Type argument, together with the Address_Family argument, specifies the protocol to be
used. For example, a socket created with AF_INET and SOCK_STREAM isa TCP socket, and a
socket created with AF_INET and SOCK_DGRAM isaUDP socket.

Protocol

OpenVMS Usage: protocol_number
type: longword (unsigned)
access: read only
mechanism: by value

A protocol to be used with the socket. Normally, only asingle protocol existsto support a particular
socket type using a given address format. However, many protocols may exist, in which case a
particular protocol must be specified by Protocol. The protocol number to use depends on the
communication domain in which communication will take place.

For TCP and UDP sockets, the protocol number MUST be specified as 0. For SOCK_RAW
sockets, the protocol humber should be the value returned by getprotobyname).

3-39

$QIO Interface SYS$CANCEL

SYS$CANCEL

Cancelsany /0 10SB status of SS§ CANCEL.
Outstanding 1/0 operations are automatically cancelled at image exit.
For more information on SY SBCANCEL, see the OpenVMS System Services Reference Manual.

FORMAT
Status = SY SSCANCEL (VMS_Channél);

3-40

SYS$DASSGN $QIO Interface

SYS$DASSGN

Equivalent to the socket_close() function. When you deassign a channel, any outstanding 1/0 is
completed with an | OSB status of SS§_CANCEL . Deassigning a channel closes the network
connection.

I/O channels are automatically deassigned at image exit.
For more information on SY SSDASSGN, see the OpenVMS System Services Reference Manual.

FORMAT
Status = SY SBDASSGN(VMS_Channel);

3-41

$QIO Interface SYS$DASSGN

3-42

Chapter 4
SNMP Extensible Agent APl Routines

This chapter is for application programmers. It describes the Application Programming Interface
(API) routines required for an application program to export private Management Information
Bases (MIBs) using the MultiNet SNMP agent.

To be able to use your private Management Information Base (MIB) with MultiNet's SNM P agent,
develop a shareable image that exports the following application programming interface routines,
in addition to routines you may need to access the MIB variables:

SnmpExtensionl nit Called by the SNMPD agent after startup to initialize the MIB
subagent

SnmpExtensionlnitEx | Registers multiple subtrees with the subagent (called by the SNMPD
agent at startup only implemented)

SnmpExtensionQuery | Completesthe MIB subagent query (called by the SNMPD agent to
handle aget, get next , or set request)

SnmpExtensionTrap Sends an enterprise-specific trap (called by the SNMPD agent when
the subagent alerts the agent that a trap needs to be set)

Note! The routine names used in this API are taken from the Microsoft SNMP Extension Agent for
Windows NT.
The SNMP shareable images need to be configured for the SNMP agent to interact with them.

See the Configuring MultiNet SNMP Agents chapter of the MultiNet for OpenVMS Installation and
Administrator’s Guiddor details on configuring the SNMP agent.

SNMP subagent developers should use the include file SNMP_COMMON.H. found in the
MULTINET_COMMON_ROOT:[MULTINET.INCLUDE] directory. Thisfile defines the data
structures the APl uses.

For details on MultiNet's SNMP agent, see Configuring MultiNet SNMP Agenis the MultiNet for
OpenVMS Installation anddministrator’'s Guide

41

SNMP Extensible Agent API Routines

Requirements
You require the following before using the SNMP extensible agent API routines:

¢ Working knowledge of SNMP; specifically the following RFCs:

— RFC 11553ructure and Identification of Management Information for TCP/IP-based
Internets

— RFC 1157A Smple Network Management Protocol (SNMP)

— RFC 1213Management Information Base for Network Management of TCP/I P-based
internets. MIB-I11

¢ Working knowledge of OpenVMS shareable images

Linking the Extension Agent Image

To link the Extension Agent Image you need to create an option file. The two examples below are
for VAX systems and Alpha Systems, respectively.

VAX

I Not e: Exclude SnnpExtensionlnitEx if it is not needed.
ISee the definition of this routine.

|

UNI VERSAL=SnmpExt ensi onl nit, -

SnnpExt ensi onQuery, -

SnnpExt ensi onTr ap, -

SnnpExt ensi onl ni t Ex

SYS$SHARE: VAXCRTL/ SHARE

|

I'List your object/library files here
Alpha

I Not e: Exclude SnnpExtensionlnitEx if it is not needed.

ISee the definition of this routine.
|

SYMBOL_VECTOR=(SnmpExt ensi onl ni t =PROCEDURE, -
SnnpExt ensi onQuer y=PROCEDURE, -

SnnpExt ensi onTr ap=PROCEDURE, -

SnnpExt ensi onl ni t Ex=PROCEDURE)

!

I'List your object/library files here

Your link statement should then look like this:

$ LI NK / SHARE= |/ nmage-nanme option-filel OPT

image-name is the name of the shareable image you want to build, and option-file is the option file
mentioned above.

4-2

SNMP Extensible Agent API Routines

Installing the Extension Agent Image
You should copy the shareable image you build for your SNMP subagent to the SY S$SHARE.

CAUTION! Since the shareable image is loaded into the same process address space as the SNMPD
server, an access violation by the subagent shareable image can crash the server
application. Ensure the integrity of your shareable image by testing it thoroughly.
Shareable image errors can also corrupt the server’s memory space or may result in
memory or resource leaks.

Debugging Code

SNM P subagent devel opers can use a debug logical, MULTINET_SNMP_DEBUG, to set certain
debug masks. Define the logical as follows and use the mask valuesin Table 4-1.

$ DEFI NE MULTI NET_SNWP_DEBUG nask

Table4-1 Debugging Mask Values

Mask Value Description

0010 Raw SNMP input

0020 Raw SNMP output

0040 ASN.1 encoded message input

0080 ASN.1 encoded message output

1000 SNMP Subagent Devel oper debug mask (prints events and statuses)

Subroutine Reference
The following pages include the subroutine descriptions.

4-3

SNMP Extensible Agent API Routines SnmpExtensionlnit

SnmpExtensioninit

Initializes the SNM P subagent and registers the subagent in the SNMPD agent. The subagent calls
thisroutine at startup.

Format
status = SnmpExtensionlnit (trap-alert-routine, time-zero-reference, trap-event, supported-view)

Return Values

TRUE | Subagent initialized successfully

FALSE | Subagent initialization failed
Arguments

trap-alert-routine

OpenVMS usage: address

type: integer

access: read only

mechanism: by value

Address of the routine the subagent should call when it is ready to send atrap.

4-4

trap-event
OpenVMS usage: unsigned long
type: longword (unsigned)
access: write only
mechanism: by reference
Currently unused.

SnmpExtensionlnit

SNMP Extensible Agent API Routines

time-zero-reference

OpenVMS usage: unsigned long

type: longword (unsigned)
access: read only
mechanism: by value

Time reference the SNMP agent provides, in hundredths of a second. Use C routines ti me() and
di fftime() tocaculate MIB uptime (in hundredths of a second).

supported-view

OpenVMS usage: object identifier

type: AsnOBJID (see the SNMP_COMMON.H file)
access: write only

mechanism: by reference

Prefix of the MIB tree the subagent supports.

4-5

SNMP Extensible Agent API Routines SnmpExtensionInitEx

SnmpExtensioninitEx

Registers multiple MIB subtrees with agent.

Thisroutineis called multiple times, once for each MIB subtree that needs to be registered. If the
routine passes back the first or next MIB subtree, return with TRUE. If al the MIB subtrees were
passed back, return with FALSE.

Note! Only implement this routine if you have multiple MIB subtrees in your extendible agent. The
MultiNet SNMP agent executes this routine if it exists and overwrites MIB information set by
SnnpExt ensi onlnit.

Format
status = SnmpExtentionl nitEx (supported-view)

Return Values

TRUE | Returning first or next MIB subtree

FALSE | All MIB subtrees were passed back

Arguments
supported-view
OpenVMS usage: object identifier
type: AsnOBJID (seethe SNMP_COMMON.H file)
access: write only
mechanism: by reference

Prefix of the MIB tree the subagent supports.

Example

i nt SnnpExt ensionlnitEx (AsnOBJI D *supportedVi ew)

{
int viewt[] = {1, 3, 6, 1, 4, 1, 12, 2, 1};
int view2[] ={1, 3, 6, 1, 4, 1, 12, 2, 2 };
int viewd[] = {1, 3, 6, 1, 4, 1, 12, 2, 5 };

static int whichView = 0;
switch (whi chvi ew++) {
case O:

supportedVi ew >i dLength = 9;

4-6

SnmpExtensionlnitEx SNMP Extensible Agent API Routines

mencpy (supportedVi ew >ids, viewl, 9* sizeof (int));
br eak;

case 1:
supportedVi ew >i dLength = 9;
mencpy (supportedVi ew >ids, view2, 9* sizeof (int));
br eak;

case 2:
supportedVi ew >i dLength = 9;
mencpy (supportedVi ew >ids, view3, 9* sizeof (int));
br eak;

defaul t:
return (0);

}

return (1);

4-7

SNMP Extensible Agent API Routines SnmpExtensionQuery

SnmpExtensionQuery

Queries the SNMP subagent to get or set avariablein the MIB tree served by the subagent. This
routineis called by the SNMPD agent to handle aget , get next , or set request.

Format
status = SnmpExtensionQuery (request-type, var-bind-list, error-status, error-index)

Return Values

TRUE | Operation successfully completed

FALSE | Operation could not be carried out by the subagent;
use error-status and error-index to provide more information

Arguments
request-type
OpenVMS usage: byte
type: unsigned char
access: read only
mechanism: by value

Identifies the type of request GET, SET, or GET NEXT.

var-bind-list
OpenVMS usage: user defined
type: RFC1157VarBindList (see the SNMP_COMMON.H file)
access. read-write
mechanism: by value

Thelist of name-value pairs used in the request. For a GET request the value isfilled by the
subagent and for a SET request, the value is be used to change the current variable value in the
subagent.

4-8

SnmpExtensionQuery SNMP Extensible Agent APl Routines

error-status
OpenVMS usage: integer
type: integer
access: write only
mechanism: by reference

Status of afailed operation.

error-index
OpenVMS usage: integer
type: integer
access: write only
mechanism: by reference

Theindex of the variable in the variable binding list for which the operation failed.

4-9

SNMP Extensible Agent API Routines SnmpExtensionTrap

SnmpExtensionTrap

Sends atrap from the subagent. If the subagent wants to send atrap, it must first call thet r ap-
al ert-routine (seethe SnnpExt ensi onl ni t routine). The trap-alert-routine should be called
with two parameters (objids, idlength). For example:

If the Process Software’s DNS process wants to send trap information to all the communities that
are interested then the DNS server must be running and the objectids passed are 1, 3, 6, 1, 4, 1, 105,
1,2,1,1,1, 3, 1, and the length of 14.

* 1,3,6,1,4,1 isthe default prefix

¢ 105istheenterpriseid for Process Software

* 1,2,1,1,1 are the Mib object ids for the DNS process

* 3,1 arethe objectids for DNSUpTrap

The SNMP agent trap-alert-routine creates a table of all received trap mibs. For each of these
entries, the agent then calls the subagent’s SnnpExt ensi onTr ap routine when it is ready to send
the trap.

Note! The SNMP agent calls the subagent from inside the t r ap- al ert -routi ne.

Format
status = SnmpExtensionTrap (enterprise, generic-trap, specific-trap, time-stamp, var-bind-list)

Return Values

TRUE | Moretrapsto be generated

FALSE | No moretrapsto be generated

Arguments
enterprise
OpenVMS usage: array of object identifiers
type: AsnOBJID (seethe SNMP_COMMON.H file)
access. write only
mechanism: by reference

The prefix of the MIB for the enterprise sending the trap.

4-10

SnmpExtensionTrap

SNMP Extensible Agent API Routines

generic-trap
OpenVMS usage: integer
type: integer
access: write only
mechanism: by reference

The generic enterprise trap id(6).

specific-trap
OpenVMS usage: integer
type: integer
access: write only
mechanism: by reference

The enterprise-specific trap number.

Note! Since an enterprise can have many traps, the combination of enterprise id, generic trap, and

specific trap should give a unique identification for a trap.

time-stamp
OpenVMS usage: integer
type: integer (timeticks)
access: write only
mechanism: by reference

The time at which the trap was generated.

4-11

SNMP Extensible Agent API Routines SnmpExtensionTrap

var-bind-list
OpenVMS usage: user defined
type: RFC1157VarBindList (see the SNMP_COMMON.H file)
access. read-write
mechanism: by value

Thelist of name-value pairs. Thislist contains name and value of the MIB variable for which the
trap is generated.

4-12

PART I

Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12

RPC Programming

RPC Fundamentals

Building Distributed Applications with RPC
RPCGEN Compiler

RPC RTL Management Routines

RPC RTL Client Routines

RPC RTL Port Mapper Routines

RPC RTL Server Routines

RPC RTL XDR Routines

Chapter 5
RPC Fundamentals

Introduction
MultiNet RPC Services must be used with the Compaq C Socket Library

This chapter isfor RPC programmers. It provides basic information you need to know before using
RPC Services to write distributed applications, including:

* What RPC Services are

* What components are in RPC Services

* How RPC clients and servers communicate
¢ Important RPC concepts and terms

What Are RPC Services?

RPC Services are a set of software development tools that allow you to build distributed
applications on OpenVMS systems.

MultiNet Implementation

RPC Services are based on the Open Network Computing Remote Procedure Call (RPC) protocols
developed by Sun Microsystems, Inc. These protocols are defined in the following Requests for
Comments (RFCs):

* RPC: Remote Procedure Call Protocol Specification, Version 2 (RFC 1057)
¢ XDR: External Data Representation Sandard (RFC 1014)

Distributed Applications

A distributed application executes different parts of its programs on different hosts in a network.
Computers on the network share the processing workload, with each computer performing the tasks
for which it is best equipped.

5-1

PART VI RPC Programming

For example, a distributed database application might consist of a central database running on a
VAX server and numerous client workstations. The workstations send requests to the server. The
server carries out the requests and sends the results back to the workstations. The workstations use
the results in other modules of the application.

RPCs allow programs to invoke procedures on remote hosts as if the procedures were local. RPC
Services hides the networking details from the application.

RPC Services facilitates distributed processing because it relieves the application programmer of
performing low-level network tasks such as establishing connections, addressing sockets, and
converting data from one machine’s format to another.

Components of RPC Services

RPC Services comprises the following components:

Run-time libraries (RTLs) | RPCGEN compiler | Port Mapper RPC Information

Run-Time Libraries (RTLS)

RPC Services provides asingle shareable RTL. The library contains:

* RPC client and server routines
* XDR routines

The RPC RTL Management Routines, Chapter 10, and the chapters that follow it describethe RTLs
in detail.

RPCGEN Compiler

RPCGEN is a compiler that creates the network interface portion of a distributed application. It
effectively hides from the programmer the details of writing and debugging low-level network
interface code. The RPCGEN Compiler, Chapter 8 , describes how to use RPCGEN.

Port Mapper

5-2

The Port Mapper helps RPC client programs connect to portsthat are being used by RPC servers. A
Port Mapper runs on each host that implements RPC Services. These steps summarize how the Port
Mapper works:

1 RPC serversregister with the Port Mapper by telling it which ports they are using.

2 When an RPC client needs to reach a particular server, it supplies the Port Mapper with the
numbers of the remote program and program version it wantsto reach. The client also specifiesa
transport protocol (UDP or TCP). (Identifying Remote Programs and Procedures provides
details on these numbers.)

3 The Port Mapper provides the correct port number for the requested service. This processis
called binding.

RPC Fundamentals

Once binding has taken place, the client does not have to call the Port Mapper for subsequent calls
to the same server. A service can register for different ports on different hosts. For example, a
server can register for port 800 on Host A and port 1000 on Host B. The Port Mapper isitself an
RPC server and uses the RPC RTL. The Port Mapper plays an important role in disseminating
messages for broadcast RPC. The Port Mapper is part of the Master Server Process. See the
Broadcast RPC section for details.

RPC Information
Use the RPC information command to:

* Request alisting of al programs that are registered with the Port Mapper

You enter this command at the DCL prompt. (See RPC Information in Chapter 12, Building
Distributed Applications, for details.)

Client-Server Relationship

In RPC, the terms client and server do not describe particular hosts or software entities. Rather,
they describe the roles of particular programs in a given transaction. Every RPC transaction has a
client and a server. The client is the program that calls aremote procedure; the server isthe
program that executes the procedure on behalf of the caller.

A program can be aclient or aserver at different times. The program’s role merely depends on
whether it is making the call or servicing the call.

External Data Representation (XDR)

External Data Representation (XDR) is a standard that solves the problem of converting data from
one machine's format to another.

RPC Services uses the XDR data description language to describe and encode data. Although
similar to C language, XDR is not a programming language. It merely describes the format of data,
using implicit typing. XDR: External Data Representation Sandard (RFC 1014) definesthe XDR

language.

RPC Processing Flow

Remote and local procedure calls share some similarities. In both cases, a calling process makes
arguments available to a procedure. The procedure uses the arguments to compute a result, then
returns the result to the caller. The caller uses the results of the procedure and resumes execution.

Figure 5-1 shows the underlying processing that makes a remote procedure call different from a
local cdl.

The following steps describe the processing flow during a remote procedure call:

5-3

PART VI RPC Programming

1

The client program passes arguments to the client stub procedure. (See Chapter 7, RPCGEN
Compiler, for details on how to create stubs.)

The client stub marshals the data by:

* Calling the XDR routines to convert the arguments from the local representation to XDR

* Placing the resultsin a packet

Using RPC RTL calls, the client stub sends the packet to the UDP or TCP layer for transmission
to the server.

The packet travels on the network to the server, up through the layers to the server stub.

The server stub un-marshals the packet by converting the arguments from XDR to the local
representation. Then it passes the arguments to the server procedure.

Figure5-1 RPC Processing Flow

Cli=ni Feogram Sepamr procedes
& i
L L
Cliaiyl &hib Saiver Al
& &
L
RPLC RPLC
Rurwes Lizeary Runtim Library
& i
T T
LICF & TORP LIOP & TCR
Iranspor - [Irara o]
arganents -

Local Calls Versus Remote Calls

This section describes some of the ways in which local and remote procedure calls handle system
crashes, errors, and call semantics.

Handling System Crashes

Local procedure calls involve programs that reside on the same host. Therefore, the called
procedure cannot crash independently of the calling program.

Remote procedure calls involve programs that reside on different hosts. Therefore, the client
program does not necessarily know when the remote host has crashed.

Handling Errors

If alocal procedure call encounters a condition that prevents the call from executing, the local
operating system usually tells the calling procedure what happened.

5-4

RPC Fundamentals

If aremote procedure call cannot be executed for some reason (e.g., errors occur on the network or
remote host), the client might not be informed of what happened. You may want to build a
signaling or condition-handling mechanism into the application to inform the client of such errors.

RPC returns certain types of errors to the client, such as those that occur when it cannot decode
arguments. The RPC server must be able to return processing-related errors, such as those that
occur when arguments are invalid, to the client. However, the RPC server may not return errors
during batch processing or broadcast RPC.

Call Semantics
Call semantics determine how many times a procedure executes.

Local procedures are guaranteed to execute once and only once.
Remote procedures have different guarantees, depending on which transport protocol is used.

The TCP transport guarantees execution once and only once as long as the server does not crash.
The UDP transport guarantees execution at least once. It relies on the X1D cacheto prevent a
remote procedure from executing multiple times.

See XID Cache for details on the X1D cache.

Programming Interface

The RPC RTL isthe programming interface to RPC. You may think of thisinterface as containing
multiple levels.

The RPC RTL reference chapters describe each routine.

High-Level Routines

The higher-level RPC routines provide the simplest RPC programming interface. These routines
call lower-level RPC routines using default arguments, effectively hiding the networking details
from the application programmer.

When you use high-level routines, you sacrifice control over such tasks as client authentication,
port registration, and socket manipulation, but you gain the benefits of using asimpler
programming interface. Programmers using high-level routines can usually develop applications
faster than they can using low-level RPC routines.

You can use the RPCGEN compiler only when you use the highest-level RPC programming
interface.

Mid-Level Routines

The mid-level routines provide the most commonly used RPC interface. They give the programmer
some control over networking tasks, but not as much control as the low-level routines permit.

For example, you can control memory allocation, authentication, ports, and sockets using mid-level
routines.

5-5

PART VI RPC Programming

The mid-level routines require you to know procedure, program, and version numbers, as well as
input and output types. Output datais available for future use. You can usether egi st err pc and
cal | r pc routines.

Low-Level Routines

The low-level routines provide the most complicated RPC interface, but they also give you the
most control over networking tasks such as client authentication, port registration, and socket
mani pulation. These routines are used for the most sophisticated distributed applications.

Transport Protocols

RPC Services uses the transport protocols listed in Table 5-1. The RPC client and server must use
the same transport protocol for a given transaction.

Table5-1 RPC Transport Protocols

Protocols | Characteristics

UbDP Unreliable datagram service

Connectionless

Used for broadcast RPC

Maximum broadcast message size in either direction on an Ethernet line: 1500

Execution is guaranteed at least once (see XID Cache)

Calls cannot be processed in batch

TCP Reliable

Connection-oriented

Can send an unlimited number of bytes per RPC call

Execution is guaranteed once and only once

Calls can be processed in batch

No broadcasting

Note! You must use the Compaq C Socket Library with RPC Services.

5-6

RPC Fundamentals

XID Cache

The XID cache stores responses the server has sent. When the XID cache is enabled, the server
does not have to recreate every response to every request. Instead, the server can use the responses
in the cache. Thus, the X1D cache saves computing resources and improves the performance of the
server.

Only the UDP transports can use the X1D cache. The reliability of the TCP transport generally
makes the X1D cache unnecessary. UDP isinherently unreliable.

Table 5-2 shows how the X1D caches differ for the UDP and UDPA/TCPA transports.

Table5-2 XID Cache Differences

UDP Transport UDPA/TCPA Transports

Places every response in the X1D cache | Allowsthe server to specify which responses areto be
cached, using the svcudpa_enabl ecache and
svct cpa_enabl ecache routines

XI1D cache cannot be disabled Requires you to disable the X1D cache after use

Cache Entries
Each entry in the XID cache contains:

* The encoded response that was sent over the network
* Theinternet address of the client that sent the request
¢ Thetransaction ID that the client assigned to the request

Cache Size
You determine the size of the X1D cache. Consider these factors:

* How many clients are using the server.
¢ Approximately how long the cache should save the responses.
* How much memory you can alocate. Each entry requires about 8K bytes.

The more active the server is, the less time the responses remain in the cache.

Execution Guarantees

Asexplained earlier in Local Calls Versus Remote Calls, remote procedures have different
execution guarantees, depending on which transport protocol is used. The XD cache affects the
execution guarantee.

The TCP transport guarantees execution once and only once as long as the server does not crash.
The UDP transport guarantees execution at least once. If the XID cacheis enabled, a UDP
procedure is unlikely to execute more than once.

5-7

PART VI RPC Programming

Enabling XID Cache

Usethesvcudp_enabl ecache routineto enable the XID cache. Thisroutineis described in the
RPC RTL reference chapters.

Not enabling the XID cache saves memory.

Broadcast RPC

Broadcast RPC allows the client to send a broadcast call to all Port Mappers on the network and
wait for multiple replies from RPC servers.

For example, a host might use a broadcast RPC message to inform all hosts on a network of a
system shutdown.

Table 5-3 shows the differences between normal RPC and broadcast RPC.

Table5-3 Normal RPC vsBroadcast RPC

Normal RPC Broadcast RPC

Client expects one answer Client expects many answers
Can use TCP or UDP Requires UDP

Server always responds to errors Server does not respond to errors;

Client does not know when errors occur

Port Mapper is desirable, but not Requires Port Mapper services
required if you use fixed port numbers

Broadcast RPC sends messages to only one port—the Port Mapper port—on every host in the
network. On each host, the Port Mappers pass the messages to the target RPC server. The servers
compute the results and send them back to the client.

Identifying Remote Programs and Procedures

The RPC client must uniquely identify the remote procedure it wants to reach. Therefore, all
remote procedure calls must contain these three fields:

* A remote program number
¢ The version number of the remote program
¢ A remote procedure number

Remote Program Numbers
A remote program is a program that implements at least one remote procedure. Remote programs

5-8

RPC Fundamentals

are identified by numbers that you assign during application development. Use Table 5-4 to
determine which program numbers are available. The numbers are in groups of hexadecimal

20000000.

Table5-4 Remote Program Numbers

Range

Purpose

0 to 1FFFFFFF

Defined and administered by Sun Microsystems. Should be identical
for al sites. Use only for applications of general interest to the
Internet community.

20000000 to 3FFFFFFF | Defined by the client application program. Site-specific. Use

primarily for new programs.

40000000 to SFFFFFFF | Use for applications that generate program numbers dynamically.

60000000 to FFFFFFFF | Reserved for the future. Do not use.

Remote Version Numbers

Multiple versions of the same program may exist on a host or network. Version numbers
distinguish one version of a program from another. Each time you alter a program, remember to
increment its version number.

Remote Procedure Numbers

A remote program may contain many remote procedures. Remote procedures are identified by
numbers that you assign during application development. Follow these guidelines when assigning
procedure numbers:

¢ Use 1 for thefirst procedurein aprogram. (Procedure O should do nothing and require no
authentication to the server.)
* For each additional procedure in a program, increment the procedure number by one.

Additional Terms
Before writing RPC applications, you should be familiar with the termsin Table 5-5.

Table5-5 Additional Terms

Term

Definition

Channel

An OpenVMS term referring to alogical path that connects a processto a
physical device, allowing the process to communicate with that device. A
process requests OpenV M S to assign a channel to a device. Refer to Compaqg
documentation for more information on channels.

5-9

PART VI RPC Programming

Table5-5 Additional Terms (Continued)

Term

Definition

Client handle

Information that uniquely identifies the server to which the client is sending the
request. Consists of the server’s host name, program number, program version
number, and transport protocol.

See the following routines in the RPC RTL Client Routines:

authnone_create cInt_create cInt_perror
authunix_create clnttcp_create
authunix_create default clntudp_create

Port

An abstract point through which a datagram passes from the host layer to the
application layer protocols.

Server
handle

Information that uniquely identifies the server. Content varies according to the
transport being used. See the following routinesin RPC RTL Server Routines:

svcudp_create svctep_create svc_destroy
svc_freeargs svC_getargs svc_getcaller
svc_register svc_sendreply svcerr_routines

Socket

An abstract point through which a process gains access to the Internet. A
process must open a socket and bind it to a specific destination. Note: The
Compaq C Socket Library must be used with RPC Services.

5-10

Chapter 6
Building Distributed Applications with RPC

Introduction

This chapter isfor RPC programmers. It explains:

* What components a distributed application contains
* How to use RPC to develop a distributed application, step by step
* How to get RPC information

Distributed Application Components
Table 6-1 lists the components of a distributed application.

Table6-1 Application Components

Component Description

Main program (client) | An ordinary main program that calls aremote procedure as if local

Network interface Client and server stubs, header files, XDR routines for input arguments
and results
Server procedure Carries out the client’s request (at least one is required)

These components may be written in any high-level language. The RPC Run-Time Library (RTL)
routines are written in the C language.

What You Need to Do
The following steps summarize what you need to do to build a distributed application:

6-1

PART VI RPC Programming

1 Design the application.

2 Write an RPC interface definition. Compile it using RPCGEN, then edit the output files as
necessary. (This step is optional. An RPC interface definition is not required. If you do not write
one, proceed to step 3.)

3 Write any necessary code that RPCGEN did not generate.

4 Compile the RPCGEN output files, server procedures, and main program using the appropriate
language compiler(s). RPCGEN output files must be compiled using Compaq C.

5 Link the object code, making sure you link in the RPC RTL.
6 Start the Port Mapper on the server host.
7 Execute the client and server programs.

Step 1: Design the Application

You must write amain (client) program and at least one server procedure. The network interface,
however, may be hand-written or created by RPCGEN. The network interface files contain client
and server stubs, header files, and XDR routines. You may edit any files that RPCGEN creates.

When deciding whether to write the network interface yourself, consider these factors:

Isexecution timecritical? | Your hand-written code may execute faster than code that
RPCGEN creates.

Which RPCinterfacelayer | RPCGEN permits you to use only the highest layer interface. If

do you want to use? you want to use the lower layers, you must write original code.

The RPC Fundamentals, Chapter 6, describes the characteristics
of each RPC interface layer.

Which transport protocol
do you want to use?

You may write your own XDR programs, but it is usually best to let RPCGEN handle these.

Step 2: Write and Compile the Interface Definition

6-2

An interface definition is a program the RPCGEN compiler accepts as input. TheRPCGEN
Compiler, Chapter 8, explains exactly what interface definitions must contain.

Interface definitions are optional . If you write the all of the network interface code yourself, you do
not need an interface definition.

You must write an interface definition if you want RPCGEN to generate network interface code.
After compiling the interface definition, edit the output file(s).
If you are not writing an interface definition, skip this step and proceed to step3.

Building Distributed Applications with RPC

Step 3: Write the Necessary Code

Write any necessary code that RPCGEN did not create for you. Table 6-2 lists the texts you may
use as references.

Table6-2 Coding References

Reference Purpose
RFC 1057 Defines the RPC language. Use for writing interface definitions.
RFC 1014 Defines the XDR language. Use for writing X DR filter routines.

The RPC RTL Client | Defines each routine in the RPC RTL. Use for writing stub procedures
Routineschapter and | and XDR filter routines.
those that follow

Step 4: Compile All Files
Compile the RPCGEN output files, server procedures, and main program separately.
Compag C (VAX and Alpha):

$ CC / STANDARD=RELAXED / WARNI NG=DI SABLE=(| MPLI Cl TFUNC) filenane.C

Step 5: Link the Object Code

Link the object code files. Make sure you link in the RPC RTL. Use the following command.
Compag C (VAX and Alpha):

$ LINK filenanes, SYS$I NPUT / OPTI ONS

TCPI PC3RPCXDR_SHR / SHARE

SYS$SHARE: DECC$SHR / SHARE
crl/z

After entering the command, pressCtrl / Z.

To avoid repetitive data entry, you may create an OpenVMS command procedure to execute these
commands.

Step 6: Start the Port Mapper

The Port Mapper must be running on the server host. If it is not running, use the MULTINET
CONFIGURE/SERVER command to start it. If you want to generate your own screen shot, you can
use CRASH. Then all you have to do is change the user-entered itemsto bold, and change the v4.4(

6-3

PART VI RPC Programming

42) to v4.4 (nnn) in the banner line.

Step 7: Execute the Client and Server Programs
Perform these steps:

1 Run the server program interactively to debug it, or using the/DETACHED quadlifier. Refer to
Compag documentation for details.

2 Run the client main program.

Obtaining RPC Information

You can:

* Request alisting of all programs registered with a Port Mapper.

Requesting a Program Listing

To request alisting of al programs that are registered with the Port Mapper, enter the MULTINET
SHOW /RPC_PORTMAP command in the following format at the DCL prompt:

$ MULTI NET SHOW / RPC_PORTMAP
If you add /REMOTE_HOST=hosthame to this command:

$ MULTI NET SHOW / RPC_PORTMAP / REMOTE_HOST=[host - nane]

Specify the domain name of the host on which the Port Mapper resides. If you omit this parameter,
RPC uses the name of the local host. Example 7-1 shows an example.

Example7-1 Sample RPC Information Output

$ MULTI NET SHOW RPC_PORTMAP
Mul ti Net regi stered RPC prograns:

Program Version Protocol Por t
NLOCKMER 3 TCP 2049
NLOCKMER 1 TCP 2049
NLOCKMER 3 UDP 2049
NLOCKMER 1 UDP 2049
NFS 2 TCP 2049
NFS 2 ubP 2049
MOUNT 1 TCP 1024
MOUNT 1 ubP 1028
STATUS 1 TCP 1024
STATUS 1 UDP 1024

6-4

Chapter 7
RPCGEN Compiler

Introduction
This chapter isfor RPC programmers.

What Is RPCGEN?

RPCGEN is the RPC Protocol Compiler. This compiler creates the network interface portion of a
distributed application, effectively hiding from the programmer the details of writing and
debugging low-level network interface code.

You are not required to use RPCGEN when developing a distributed application. If speed and
flexibility are critical to your application, you can write the network interface code yourself, using
RPC Run-Time Library (RTL) calls where they are needed.

Compiling with RPCGEN is one step in developing distributed applications. See Chapter 7,
Building Distributed Applications, for a complete description of the application devel opment
process.

RPCGEN allows you to use the highest layer of the RPC programming interface. The RPC
Fundamentals, Chapter 6, provides details on these layers.

Software Requirements
The following software must be installed on your system before you can use RPCGEN:

VMS Version 5.0 or later Compaq C compiler Version 3.2 or later

7-1

PART VI RPC Programming

Input Files

7-2

The RPCGEN compiler accepts as input programs called interface definitions, written in RPC
Language (RPCL), an extension of XDR language. RFC 1057 and RFC 1014 describe these
languages in detail.

An interface definition must always contain the following information:

* Remote program number

* Version number of the remote program
¢ Remote procedure number(s)

* |nput and output arguments

Table 7-1 shows a sampl e interface definition.

Example7-1 Interface Definition

/*

** RPCGEN input file for the print file RPC batching exanpl e.

* %

** This file is used by RPCGEN to create the files PRINT.H and PRI NT_XDR. C
** The client and server files were devel oped from scratch.

*/

const MAX_STRI NG LEN = 1024; /[* maxi mum string length */
/*
** This is the information that the client sends to the server
*/
struct a_record
{
string ar_buffer< MAX _STRI NG _LEN>;
b
program PRI NT_FI LE_PROG
{ version PRI NT_FILE VERS 1

{
voi d PRI NT_RECORD(a_record) = 1;
u_l ong SHOW COUNT(void) = 2;
b=
} = 0x20000003;

/* end file PRINT. X */
The default extension for RPCGEN input filesis . X.

You do not need to call the RPC RTL directly when writing an interface definition. RPCGEN
inserts the necessary library calsin the output file.

RPCGEN Compiler

Output Files

RPCGEN output files contain code in C language. Table 7-1 lists the RPCGEN output files and
summarizes their purpose. You can edit RPCGEN output files during application development.

Table7-1 RPCGEN Output Files

File Purpose

Client and server| Interface between the network and the client and server programs. Stubs U

stub calls RPC RTL to communicate with the network.

XDR routines Convert data from a machine's local data format to XDR for mat, and Vvice
versa.

Header Contains common definitions, such as those needed for any structures be
passed.

Invoking RPC explains how to request specific output files.

Table 7-2 shows the conventions you should use to name output files.

Table7-2 RPCGEN File Naming Conventions

File Output Filename
Client stub inputname_CLNT.C
Server stub inputname_SVC.C
Header file inputname.H

XDR filter routines inputname_XDR.C

— inputname is the name of the input file. For example, if the input file is TEST.X, the server st
is TEST_SVC.C.

When you use the RPCGEN command to create all output files at once, RPCGEN creates the
output filenames listed in Table 7-2 by default. When you want to create specific kinds of outpt
files, you must specify the names of the output files in the command line.

Preprocessor Directives

RPCGEN runs the input files through the C preprocessor before compiling. You can use the me
listed in Table 7-3 with the&i f def preprocessor directive to indicate that specific lines of code ir

7-3

PART VI RPC Programming

theinput file are to be used only for specific RPCGEN output files.

Table7-3 Macros

File Macro
Client stub RPC_CLNT
Server stub RPC _SvC
Header file RPC_HDR
XDR filter routines RPC_XDR

Invoking RPCGEN

This section explains how to invoke RPCGEN to create;

¢ All output files at once
¢ Specific output files
* Server stubs for either the TCP or UDP transport

Creating All Output Files at Once
This command creates al four RPCGEN output files at once:

RPCGEN |/ nput
where input is the name of the file containing the interface definition.

In the following example, RPCGEN creates the output files PROGRAM.H, PROGRAM_CLNT.C,
PROGRAM_SVC.C, and PROGRAM_XDR.C:

RPCGEN PROGRAM X

Creating Specific Output Files
This command creates only the RPCGEN output file that you specify:

RPCGEN {-¢c | -h | -1 | -m [-0 output] input
-C Creates an XDR filter file (XDR.C)
-h Creates a header file (.H)

-l Creates aclient stub (CLNT.C)

-m Creates a server stub (_SVC.C) that uses both the UDP and TCP transports

7-4

RPCGEN Compiler

-0 Specifies an output file (or the terminal if no output fileis given)

output Name of the output file

input Name of an interface definition file with a.X extension

Follow these guidelines:

¢ Specify just one output file (- c, - h, -1, or - m) inacommand line
¢ |f you omit the output file, RPCGEN sends output to the terminal screen

Examples:
1 RPCGEN -h PROGRAM

RPCGEN accepts the file PROGRAM.X as input and sends the header file output to the screen,
because no output file is specified.

2 RPCGEN -l -0 PROGRAM_CLNT.C PROGRAM.X

RPCGEN accepts the PROGRAM .X file asinput and creates the PROGRAM_CLNT.C client
stub file.

3 RPCGEN -m -0 PROGRAM_SVC.C PROGRAM.X

RPCGEN accepts the PROGRAM . X file asinput and creates the PROGRAM_SVC.C server
stub file. The server can use both the UDP and TCP transports.

Creating Server Stubs for TCP or UDP Transports
This command creates a server stub file for either the TCP or UDP transport:

RPCGEN -s {udp | tcp} [-0 output] input

-S Creates a server (_SVC.C) that uses either the UDP or TCP transport (with - s, you
must specify either udp ort cp; do not also use - m

udp Creates a UDP server

tcp Createsa TCP server

-0 Specifies an output file (or the terminal if no output fileis given)

output Name of the output file

input Name of an interface definition file with a.X extension

If you omit the output file, RPCGEN sends output to the terminal screen.

In this example, RPCGEN accepts the PROGRAM .X file asinput and creates the
PROGRAM_SVC.C output file, containing a TCP server stub:

RPCGEN -s tcp -o PROGRAM SVC. C PROGRAM X

7-5

PART VI RPC Programming

Error Handling

RPCGEN stops processing when it encounters an error. It indicates which line the error is on.

Restrictions
RPCGEN does not support the following:

* Thesyntaxint x, y; .Youmustwritethisasint x; int vy;

7-6

Chapter 8

RPC RTL Management Routines

Introduction

This chapter isfor RPC programmers. It introduces RPC Run-Time Library (RTL) conventions and
documents the management routines in the RPC RTL. These routines are the programming
interface to RPC.

Management Routines
The RPC RTL contains:

¢ RPC management routines
* RPC client and server routines for the UDP and TCP transport layers

¢ OnVAX and Alpha systems, RPC provides a single shareable image accessed viathe
TCPIP$RPCXDR_SHR logical. This shareable image contains routines for all of the Compag C
floating-point types. The correct routines will automatically be called based on the compiler
options used to compile the RPC application. See the Compag C documentation for how to use
the floating-point compiler options.

Chapter 7, Building Distributed Applications with RPC, explains how to link in the RPC RTL.

Routine Name Conventions
In this chapter, all routines are documented according to their standard UNIX names.

Header Files
All RPC programs include the file named RPC.H. Locations for thisfile are:

— TCPIP$RPC:RPC.H

8-1

PART VI RPC Programming

The RPC.H fileincludes the files listed in Table 8-1.

Table8-1 Header FilesIncluded In RPC.H

Filename Purpose

AUTH.H Used for authentication.

AUTH_UNIX.H | Contains XDR definitions for UNIX-style authentication.

CLNT.H Contains various RPC client definitions.

IN.H Defines structures for the internet and socket addresses (i n_addr and
sockaddr i n). Thisfileis part of the C Socket Library.

RPC_MSGH Defines the RPC message format.

SVC.H Contains various RPC server definitions.

SVC AUTH.H Used for server authentication.

TYPESH Defines UNIX C datatypes.
XDR.H Contains various XDR definitions.
NETDB.H Defines structures and routines to parse /etc/rpc.

Thereis an additional header file not included by RPC.H that is used by xdr_pmap and
xdr_pmaplist routines. The file name is pmap_prot.h, and the location is:

TCPI PSRPC: PMAP_PROT. H

Management Routines

RPC management routines retrieve and maintain information that describes how a processis using
RPC. This section describes each management routine and function in detail. The following
information is provided for each routine:

¢ Format

* Arguments

¢ Description

¢ Diagnostics, or status codes returned, if any

8-2

get_myaddress RPC RTL Management Routines

get_myaddress
Returns the internet address of the local host.

Format

#i ncl ude
voi d get _nyaddress (struct sockaddr_in *addr);

Argument

addr
Address of asockaddr _i n structure that will be loaded with the host internet address. The port
number is always set to ht ons(PMAPPORT) .

Description

Theget _nyaddr ess routine returns the internet address of the local host without doing any name
translation or DNS lookups.

8-3

PART VI RPC Programming getrpcbynumber

getrpcbynumber
Gets an RPC entry.

Format

#i ncl ude
struct rpcent *getrpcbynunber (nunber)
i nt nunber;

Argument

nunmber
Program name or number.

Description

Theget r pcbynunber routine returns a pointer to an object with the following structure
containing the broken-out fields of alinein the RPC program number database, / et c/ r pc.

struct rpcent {

char *r_nane; /* name of server for this RPC program*/
char **r_ali ases; /* alias list */

| ong r_numnber; /* RPC program nunmber */

b

The members of this structure are:

r _name Name of the server for this RPC program
r_aliases Zero-terminated list of alternate names for the RPC program
r _nunber RPC program number for this service

Theget r pcbynunber routine sequentially searches from the beginning of the file until a
matching RPC program name or program number is found, or until an EOF is encountered.

Diagnostics
A NULL pointer isreturned on EOF or error.

8-4

getrpcport RPC RTL Management Routines

getrpcport
Gets an RPC port number.

Format
i nt getrpcport(host, prognum versnum proto)
char *host;

int prognum versnum proto;

Arguments

host
Host running the RPC program.

prognum
Program number.

proto
Protocol name. Must be IPPROTO_TCP or IPPROTO_UDP.

Description

Theget r pcport routine returns the port number for version versnum of the RPC program
proghum running on host and using protocol proto.

It returns O if it cannot contact the portmapper, or if prognumis not registered. If prognumis
registered but not with versnum, it still returns a port number (for some version of the program),
indicating that the program is indeed registered. The version mismatch is detected on the first call
to the service.

8-5

Chapter 9

Introduction

RPC RTL Client Routines

This chapter is for RPC programmers. It documents the client routines in the RPC Run-Time
Library (RTL). These routines are the programming interface to RPC.

Common Arguments

Many client, Port Mapper, and server routines use the same arguments.

Table 9-1 lists these arguments and defines their purpose. Arguments that are unique to each
routine are documented together with their respective routines in this and the following chapters

Table9-1 Common Arguments

Argument Purpose

args_ptr Address of the buffer to contain the decoded RPC arguments.

auth RPC authentication client handle created by theaut hnone_cr eat e,
aut huni x_creat e, oraut huni x_cr eat e_def aul t routine.

cint Client handle returned by any of the client create routines.

in Input arguments for the service procedure.

inproc XDR routine that encodes input arguments.

out Results of the remote procedure call.

outproc XDR routine that decodes output arguments.

procnum Number of the service procedure.

9-1

PART VI RPC Programming

Table9-1 Common Arguments (Continued)

Argument Purpose

prognum Program number of the service program.

protocol Transport protocol for the service. Must be IPPROTO_UDP or IPPROTO_TCP.

s String containing the message of your choice. The routines append an error
message to this string.

sockp Socket to be used for this remote procedure call. If sockp isRPC_ANY SOCK,
the routine creates a new socket and defines sockp. Thecl nt _destr oy
routine closes the socket.
If sockp isavalue other than RPC_ANY SOCK, the routine uses this socket
and ignores the internet address of the server.

versnum Version number of the service program.

xdr_args XDR procedure that describes the RPC arguments.

xdrs Structure containing XDR encoding and decoding information.

xprt RPC server handle.

Client Routines

The client routines are called by the client main program or the client stub procedures.

9-2

The following sections describe each client routine in detail .

auth_destroy RPC RTL Client Routines

auth_destroy
A macro that destroys authentication information associated with an authentication handle.

Format

voi d auth_destroy (AUTH *aut h)

Argument

auth
RPC authentication client handle created by the aut hnone_cr eat e, aut huni x_cr eat e, or
aut huni x_creat e_def aul t routine.

Description

Useaut h_dest r oy to free memory that was allocated for authentication handles. This routine
undefines the value of auth by deallocating private data structures.

Do not use this memory space after aut h_dest r oy has completed. You no longer own it.

See Also

aut hnone_create, aut huni x_create, aut huni x_create_defaul t

9-3

PART VI RPC Programming authnone_create

authnone_create
Creates and returns a null RPC authentication handle for the client process.

Format

#i ncl ude
AUTH *aut hnone_create();

Arguments
None.

Description

Thisroutineisfor client processes that require no authentication. RPC usesit as adefault when it
creates aclient handle.

See Also
aut hnone_cr eat e, aut huni x_create_defaul t,
clnt_create, clntraw_create, clnttcp_create,

clntudp_create / clntudp_bufcreate

9-4

authunix_create RPC RTL Client Routines

authunix_create

Creates and returns an RPC authentication handle for the client process. Use this routine when the
server requires UNIX-style authentication.

Format

#i ncl ude

AUTH *aut huni x_create (char *host, int uid, int gid, int /en, int gids);

Arguments

host

Address of the name of the host that created the authentication information. Thisisusually thelocal
host running the client process.

ui d

User ID of the person who is executing this process.

gi d

User'sgroup ID.

I en
Number of elementsin the* gi ds array.

gi ds
Address of the array of groups to which the user belongs.

Description

Since the client does not validate the uid and gid, it is easy to impersonate an unauthorized user.
Choose values the server expects to receive. The application must provide OpenVMS-to-UNIX
authorization mapping.

You can use a Socket Library lookup routine to get the host name.

See Also

aut hnone_create, aut huni x_creat e_defaul t

9-5

PART VI RPC Programming authunix_create_default

authunix_create_default
Callsthe aut huni x_cr eat e routine and provides default values as arguments.

Format

#i ncl ude

AUTH *aut huni x_create_defaul t ()

Arguments
See below.

Description

Likethe aut huni x_cr eat e routine, aut huni x_cr eat e_def aul t provides UNIX-style
authentication for the client process. However, aut huni x_cr eat e_def aul t does not require you
to enter any arguments. Instead, this routine provides default values for the arguments used by

aut huni x_cr eat e, listed in Table 9-2.

Table9-2 Default Arguments

Argument | Default Value

host local host domain name
uid getuid ()

gid getgid ()

len 0

gids 0

You can replace this call with aut huni x_cr eat e and provide appropriate values.

Example

aut h_destroy(client->cl_auth);
client->cl _auth = authuni x_create_defaul t();

This example overridesthe aut hnone_cr eat e routine, where c/ i ent isthevaluereturned by the
clnt_create,clntraw create, clnttcp_create,orclntudp_creat e routine.

See Also

call rpc

Calls the remote procedure identified by the routine’s arguments.

9-6

callrpc RPC RTL Client Routines

callrpc

Format
#i ncl ude

int callrpc (char *host, u_long prognum u_long versnum u_long procnum
xdrproc_t inproc, u_char *in,
xdrproc_t outproc, u_char *out);

Arguments

host
Host where the procedure resides.

prognum versnum procnum inproc, in, outproc, out
See Table 9-1 for a description of the above arguments.

Description

Thecal | r pc routine performs the same functionsasthecl nt _creat e, andcl nt _destr oy
routines.

Sincethecal | r pc routine uses the UDP transport protocol, messages can be no larger than
8K bytes. This routine does not allow you to control timeouts or authentication.

If you want to use the TCP transport, usethecl nt _create orcl nttcp_create routine.

Diagnostics

Thecal | r pc routine returns zero if it succeeds, and the value of enum cl nt _st at cast toan
integer if it fails.

You can usethecl nt _per r no routine to trand ate failure status codes into messages.

See Also
cl nt _broadcast, clnt_call, clnt_create, cl nt _destroy,
clnt_perrno / clnt_sperrno, clnttcp_create

9-7

PART VI RPC Programming clnt_broadcast

clnt_broadcast

Broadcasts a remote procedure call to all local networks, using the broadcast address.

Format

#i ncl ude

enum cl nt _stat clnt_broadcast (u_long prognum u_long versnum u_long
procnum xdrproc_t inproc, u_char *in,
xdrproc_t outproc, u_char *out, resultproc_t eachresult);

Arguments

prognum versnum procnum inproc, in, outproc, out
See Table 9-1 for a description of the above arguments.

eachresul t

Eachtimecl nt _br oadcast receivesaresponse, it calls the eachresult routine. If eachresult
returns zero, cl nt _br oadcast waitsfor more replies. If eachresult returns a nonzero value,
cl nt _broadcast stopswaiting for replies. The eachresult routine uses this form:

int eachresult(out, addr)
u_char *out;

struct sockaddr_in *addr;

out Contains the results of the remote procedure call, in the local data format.

*addr |s the address of the host that sent the results.

Description

9-8

Thecl nt _br oadcast routine performsthe same functions asthe cal | r pc routine. However,
cl nt _broadcast sendsamessageto al local networks, using the broadcast address. The
cl nt _broadcast routine uses the UDP protocol.

Table 9-3 indicates how large a broadcast message can be.

Table9-3 Maximum Message Size

Line Maximum Size
Ethernet 1500 bytes
proNet 2044 bytes

cint_broadcast RPC RTL Client Routines

Diagnostics
This routine returns diagnostic values defined in the CLNT.H file for enuncl nt _st at .

See Also

call rpc, clnt_perrno / clnt_sperrno

9-9

PART VI RPC Programming clnt_call

cint_call
A macro that calls a remote procedure.

Format

enumclnt_stat clnt_call (CLIENT *c/nt, u_long procnum
xdrproc_t inproc, u_char *in, xdrproc_t outproc, u_char *out,
struct tineval tout);

Arguments

clnt, procnum inproc, in, outproc, out
See Table 9-1 for a description of the above arguments.

tout
Time allowed for the results to return to the client, in seconds and microseconds. If you use the
cl nt _control routineto change the CLSET_TI MEQUT code, this argument isignored.

Description

Usethecl nt _cal | routine after using cl nt _cr eat e. After you have finished with the client
handle, usethecl nt _dest r oy routine. You can usethecl nt _perror routineto print messages
for any errorsthat occurred.

Diagnostics
This routine returns diagnostic values defined in the CLNT.H file for enuntl nt _st at .

See Also

clnt _control, clnt _create, cl nt _destroy,
clnt_perrno / clnt_sperrno

9-10

cint_control RPC RTL Client Routines

clnt_control
A macro that changes or retrieves information about an RPC client process.

Format

bool _t clnt_control (CLIENT *c/nt, u_long code, void *info);

Arguments

cl nt
Client handle returned by any of the client create routines.

code
Codelisted in Table 9-4.

Table9-4 Valid Codes

Code Type Purpose
CLSET_TIMEOUT struct timeval Set total timeout
CLGET_TIMEOUT struct timeval Get total timeout
CLSET_RETRY_TIMEOUT* struct timeval Set retry timeout
CLGET_RETRY_TIMEOUT* struct timeval Get retry timeout
CLGET_SERVER_ADDR struct sockaddr_in Get server address
* Valid only for the UDP transport protocol.

Theti meval isspecified in seconds and microseconds. The total timeout is the length of time that
the client waits for areply. The default total timeout is 25 seconds.

Theretry timeisthe length of time that UDP waits for the server to reply before transmitting the
request. The default retry timeout is 5 seconds. You might want to increase the retry timeif your
network is slow.

For exampl e, suppose the total timeout is 10 seconds and the retry time is five seconds. The client
sends the request and waits five seconds. If the client does not receive areply, it sends the request
again. If the client does not receive areply within five seconds, it does not send the request again.

If you use CLSET_TI MEQUT to set the timeout, the cl nt _cal | routine ignores the timeout
parameter it receives for all future calls.

info
Address of the information being changed or retrieved.

9-11

PART VI RPC Programming clnt_control

Diagnostics
This routine returns TRUE if it succeeds, and FALSE if it fails.

See Also
clnt_call, clnt_create, cl nt _destroy, clntraw_create,
clnttcp_create, clntudp_create / clntudp_bufcreate

9-12

cint_create RPC RTL Client Routines

cint_create
Creates an RPC client handle.

Format
#i ncl ude

CLI ENT *cl nt_create (char *host, u_long prognum u_long versnum char
* .
proto);

Arguments

host
Address of the string containing the name of the remote host where the server islocated.

prognum versnum
See Table 9-1 for a description of the above arguments.

proto
Address of a string containing the name of the transport protocol. Valid values are UDP and TCP.

Description

Thecl nt _cr eat e routine creates an RPC client handle for pr ognum An RPC client handleisa
structure containing information about the RPC client. The client can use the UDP or TCP transport
protocol.

This routine uses the Port Mapper. You cannot control the local port.

The default sizes of the send and receive buffers are 8800 bytes for the UDP transport, and 4000
bytes for the TCP transport.

Theretry time for the UDP transport is five seconds.

Usethecl nt _creat e routineinstead of thecal | r pc or cl nt _br oadcast routinesif you want
to use one of the following:

* The TCP transport
¢ An authentication other than null
* More than one active client at the same time

You can also usecl ntraw cr eat e to usethe IP protocol, cl ntt cp_cr eat e to use the TCP
protocol, or cl nt udp_cr eat e to use the UDP protocol.

Thecl nt _creat e routine usesthe global variabler pc_createerr.rpc_createerr isa
structure that contains the most recent service creation error. User pc_cr eat eer r if you want the
client program to handle the error. The value of r pc_cr eat eer r isset by any RPC client creation
routine that does not succeed.

9-13

PART VI RPC Programming clnt_create

Therpc_creat eerr variableisdefined in the CLNT.H file.

Diagnostics

Thecl nt _cr eat e routine returns the address of the client handle, or zero (if it could not create the
client handle).

If thecl nt _cr eat e routine fails, you can usethecl nt _pcr eat eerror or
cl nt _spcreat eer ror routinesto obtain diagnostic information.

See Also
clnt_call, clnt_control, cl nt _destroy,
clnt_pcreateerror / clnt_spcreateerror, clntraw create,
clnttcp_create, cl ntudp_create / clntudp_bufcreate

9-14

cint_destroy RPC RTL Client Routines

clnt_destroy
A macro that destroys an RPC client handle.

Format

voi d clnt_destroy (CLIENT *cl/nt);

Argument

cl nt
Client handle returned by any of the client create routines.

Description

Thecl nt _dest r oy routine destroys the client’s RPC handle by deallocating all memory related to
the handle. The client is undefined after thecl nt _dest r oy call.

If thecl nt _cr eat e routine had previously opened a socket, this routine closes the socket.
Otherwise, the socket remains open.

See Also

clnt _create, clntraw create, clnttcp_create,
clntudp_create / clntudp_bufcreate

9-15

PART VI RPC Programming clnt_geterr

cint_geterr
A macro that returns an error code indicating why an RPC call failed.

Format

void clnt_geterr (CLIENT *c/nt, struct rpc_err *errp);

Arguments

cl nt
Client handle returned by any of the client create routines.

errp
Address of the structure containing information that indicates why an RPC call failed. This
information isthe sameascl nt _st at contains, plus one of the following: the C error number, the
range of server versions supported, or authentication errors.

Description
This routineis primarily for internal diagnostic use.

Example
#def i ne PROGRAM 1
#def i ne VERSI ON 1

CLI ENT *clnt;
struct rpc_err err;

clnt = clnt_create("server nanme", PROGRAM VERSION, "udp");
/* calls to RPC library */

clnt_geterr(clnt, &err);

This example creates a UDP client handle and performs some additional RPC processing. If an
RPC call fails, cl nt _get er r returnsthe error code.

See Also

clnt_perror / clnt_sperror

9-16

cint_pcreateerror / cInt_spcreateerror RPC RTL Client Routines

clnt_pcreateerror / clnt_spcreateerror
Return a message indicating why RPC could not create a client handle.

Format

#i ncl ude

voi d clnt_pcreateerror (char *s);
char *clnt_spcreateerror (char *s);

Argument

S
String containing the message of your choice. The routines append an error message to this string.

Description
Thecl nt _pcr eat eerror routine prints amessage to SY SSOUTPUT.

Thecl nt _spcr eat eerror routine returns the address of a string. Use this routine if;

* You want to save the string.
* You do not want to usepri nt f to print the message.
¢ The message format is different from the one that cl nt _per r no supports.

Thecl nt _spcr eat eerror routine overwrites the string it returns, unless you save the results.

Usetheseroutineswhenthecl nt _create,clntraw create, clnttcp_create,or
cl nt udp_cr eat e routinefails.

See Also

clnt_create, clntraw_create, clnttcp_create,
cl ntudp_create / clntudp_bufcreate

9-17

PART VI RPC Programming clnt_perrno / clnt_sperrno

cint_perrno / clnt_sperrno

Return a message indicating why thecal | r pc or cl nt _br oadcast routinefailed to create a
client handle.

Format
#i ncl ude

void clnt_perrno (enumclnt_stat stat);
char *clnt_sperrno (enumclnt_stat stat);

Argument

stat
Appropriate error condition. Values for stat are defined in the CLNT.H file.

Description
Thecl nt _per r no routine prints a message to SY SSOUTPUT.

Thecl nt _sper r no routine returns the address of a string. Use this routine instead if:

* You want to save the string.
* You do not want to usepri nt f to print the message.
¢ The message format is different from the one that cl nt _per r no supports.

To save the string, copy it into your own memory space.

See Also

callrpc, cl nt _br oadcast

9-18

cint_perror / cInt_sperror

RPC RTL Client Routines

clnt_perror / cInt_sperror
Return amessage if thecl nt _cal | routinefails.

Format

#i ncl ude

void clnt_perror (CLIENT *clnt, char *s);
char *clnt_sperror (CLIENT *cl/nt, char *s);

Arguments

cl nt

See Table 9-1 for a description of the above argument. String containing the message to output.

Description
Usetheseroutines after cl nt _cal | .

Thecl nt _perror routine prints an error message to SY SSOUTPUT.
Thecl nt _sperror routine returns a string. Use thisroutine if:

* You want to save the string.
* You do not want to usepri nt f to print the message.

* The message format is different from the one that cl nt _perr or supports.

Thecl nt _sper ror routine overwrites the string with each call. Copy the string into your own

memory space if you want to saveit.

See Also

clnt_call, cl nt_create, clntraw_create, clnttcp_create,

cl ntudp_create / clntudp_bufcreate

9-19

PAR

T VI RPC Programming clntraw_create

cintraw_create

For

Arg

Returns an RPC client handle. The remote procedure call uses the IP transport.

mat

#i ncl ude

CLI ENT *clntraw _create (struct sockaddr_in *addr,
u_l ong prognum u_long versnum int *sockp, u_long sendsize,
u_l ong recvsize);

uments

addr, prognum versnum
See Table 9-1 for a description of the above arguments.

sockp

Socket to be used for this remote procedure call. sockp can specify the local address and port
number. If sockp is RPC_ANY SOCK, then a port number is assigned. The example shown for the
cl nt udp_cr eat e routine shows how to set up sockp to specify a port. See Table 9-1 for a
description of sockp and RPC_ANYSQOCK.

addr
Internet address of the host on which the server resides.

sendsi ze
Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsi ze
Size of the receive buffer. If you enter avalue less than 100, then 4000 is used as the defaullt.

Description

9-20

Thecl ntraw_cr eat e routine creates an RPC client handle for addr, prognum, and versnum. The
client usesthe IP transport. Theroutineis similar to thecl nt _cr eat e routine, except

cl nttcp_creat e allowsyou to specify a socket and buffer sizes. If you specify the port number
aszero by using addr - >si n_por t , the Port Mapper provides the number of the port on which the
remote program is listening.

The transport used to pass messages to the service is actually a buffer within the process's address
space, so the corresponding RPC server should live in the same address space (see also
svecraw_cr eat e). Thisallows simulation of RPC and getting RPC overheads, such as round trip
times, without kernel interference.

Thecl ntt cp_cr eat e routine uses the global variabler pc_cr eat eer r, which is a structure that
contains the most recent service creation error. User pc_cr eat eer r if you want the client

clntraw_create RPC RTL Client Routines

program to handle the error. The value of r pc_cr eat eer r isset by any RPC client creation
routine that does not succeed. Ther pc_cr eat eer r variable isdefined inthe CLNT.H file.

Diagnostics

Thecl ntraw_cr eat e routine returns the address of the client handle, or zero (if it could not
create the client handle). If the routine fails, usethecl nt _pcr eat eerror or
cl nt _spcreat eerror routine to obtain additional diagnostic information.

See Also
clnt_call, clnt_control, clnt _create, cl nt _destroy,
clnt_pcreateerror / clnt_spcreateerror, clnttcp_create,

cl ntudp_create / clntudp_bufcreate

9-21

PART VI RPC Programming clnttcp_create

cinttcp_create

For

Arg

Returns an RPC client handle. The remote procedure call uses the TCP transport.

mat

#i ncl ude

CLI ENT *clnttcp_create (struct sockaddr_in *addr,
u_l ong prognum u_long versnum int *sockp, u_long sendsize,
u_l ong recvsize);

uments

addr, prognum versnum
See Table 9-1 for a description of the above arguments.

sockp

Socket to be used for this remote procedure call. sockp can specify the local address and port
number. If sockp is RPC_ANY SOCK, then a port number is assigned. The example shown for the
cl nt udp_cr eat e routine shows how to set up sockp to specify a port. See Table 9-1 for a
description of sockp and RPC_ANYSQOCK.

addr
Internet address of the host on which the server resides.

sendsi ze
Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsi ze
Size of the receive buffer. If you enter avalue less than 100, then 4000 is used as the defaullt.

Description

9-22

Thecl ntt cp_cr eat e routine creates an RPC client handle for addr, prognum, and versnum. The
client uses the TCP transport. The routine is similar to thecl nt _cr eat e routine, except

cl nttcp_creat e allowsyou to specify a socket and buffer sizes. If you specify the port number
aszero by using addr - >si n_por t , the Port Mapper provides the number of the port on which the
remote program is listening.

Thecl nttcp_creat e routine uses the global variabler pc_createerr.rpc_createerr isa
structure that contains the most recent service creation error. User pc_cr eat eer r if you want the
client program to handle the error. The value of r pc_cr eat eer r isset by any RPC client creation
routine that does not succeed. Ther pc_cr eat eer r variable isdefined in the CLNT.H file.

cinttcp_create RPC RTL Client Routines

Diagnostics

Thecl ntt cp_cr eat e routine returns the address of the client handle, or zero (if it could not
create the client handle). If the routine fails, usethecl nt _pcreat eerror or
cl nt _spcreat eerror routineto obtain additional diagnostic information.

See Also

clnt_call, clnt_control, clnt_create, cl nt_destroy,
clnt_pcreateerror / clnt_spcreateerror,
cl ntudp_create / clntudp_bufcreate

9-23

PART VI RPC Programming clntudp_create / clntudp_bufcreate

cintudp_create / cintudp_bufcreate
Returns an RPC client handle. The remote procedure call uses the UDP transport.

Format

#i ncl ude

CLI ENT *cl ntudp_create (struct sockaddr_in *addr,
u_long prognum u_long versnum struct tinmeval wait,
int *sockp);

CLI ENT *cl ntudp_bufcreate (struct sockaddr_in *addr,
u_long prognum u_long versnum struct tineval wait,
int *sockp, u_long sendsize, u_long recvsize);

Arguments

addr
Internet address of the host on which the server resides.

prognum versnum sockp
See Table 9-1 for a description of the above arguments.

wai t
Timeinterval the client waits before resending the call message. This value changes the
CLSET_RETRY_TI MEQUT code. Thecl! nt _cal | routine usesthisvalue.

sendsi ze
Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsi ze
Size of the receive buffer. If you enter a value less than 100, then 4000 is used as the default.

Description

These routines create an RPC client handle for addr, prognum, and versnum. The client uses the
UDP transport protocol.

If you specify the port number as zero by using addr - >si n_por t , the Port Mapper provides the
number of the port on which the remote program is listening.

Note! Use the cl nt udp_cr eat e routine only for procedures that handle messages shorter than 8K
bytes. Use the cl nt udp_buf cr eat e routine for procedures that handle messages longer than
8K bytes.

Thecl nt udp_cr eat e routine uses the global variabler pc_createerr.rpc_createerr isa

9-24

cintudp_create / cintudp_bufcreate RPC RTL Client Routines

structure that contains the most recent service creation error. User pc_cr eat eer r if you want the
client program to handle the error. The value of r pc_cr eat eer r isset by any RPC client creation
routine that does not succeed.

Therpc_creat eerr variableisdefined in the CLNT.H file.

Example

mai n()

{
int sock;
u_long prog = PROGRAM vers = VERSI ON;
CLI ENT *cl nt;
struct sockaddr _in | ocal addr, renote_addr;
struct timeval timeout = { 35, 0},

retry = { 5, 0};
renote_addr.sin_fam|ly = AF_|I NET;
renote_addr.sin_port = 0; /* consult the rempte port napper */
renot e_addr. sin_addr.s_addr = 0x04030201; /* internet
addr 1.2.3.4 */
| ocal _addr.sin_fam |y = AF_I NET;
| ocal _addr.sin_port = 12345; /* use port 12345 */
| ocal _addr.sin_addr.s_addr = 0x05030201; /* internet addr
1.2.3.5 */

sock = socket(AF_I NET, SOCK DGRAM 0);
/* bind the socket to the local addr */
bi nd(sock, & ocal _addr, sizeof(|ocal_addr));
/* create a client that uses the local | A and port given above */
clnt = clntudp_create(& enote_addr, prog, vers, retry, &sock);
/* use a connection timeout of 35 seconds, not the default */
clnt_control (clnt, CLSET_TIMEQUT, &tineout);
/*call the server here*/

}

This example defines a socket structure, binds the socket, and creates a UDP client handle.

9-25

PART VI RPC Programming clntudp_create / clntudp_bufcreate

Diagnostics

These routines return the address of the client handle, or zero (if they cannot create the client
handle).

If these routines fail, you can obtain additional diagnostic information by using the
cl nt_pcreateerrror orclnt_spcreateerror routine.

See Also
clnt_call, clnt_control, clnt_create, cl nt_destroy,
clnt_pcreateerror / clnt_spcreateerror, clnttcp_create

9-26

Chapter 10
RPC RTL Port Mapper Routines

Introduction

This chapter isfor RPC programmers. It documents the port mapper routinesin the RPC Run-Time
Library (RTL). These routines are the programming interface to RPC.

Port Mapper Routines

Port Mapper routines provide a simple callable interface to the Port Mapper. They allow you to
request Port Mapper services and information about port mappings. Table 10-1 summarizes the
purpose of each Port Mapper routine.

Table10-1 Port Mapper Routines

Routine Purpose

pmap_getmaps Returns alist of Port Mappings for the specified host.

pmap_getport Returns the port number on which a specified service is waiting.
pmap_rmtcall Requests the Port Mapper on aremote host to call a procedure on that host.
pmap_set Registers a remote service with a remote port.

pmap_unset Unregisters aservice so it is no longer mapped to a port.

Port Mapper Arguments

Port Mapper routines use many of the same arguments as client routines. See Table 10-1inthe RPC
RTL Client Routines chapter for alist of these arguments.

The following sections describe each Port Mapper routine in detail.

10-1

PART VI RPC Programming pmap_getmaps

pmap_getmaps
Returns alist of Port Mappings for the specified host.

Format

struct prmaplist *pmap_get maps (struct sockaddr_in *addr);

Argument

addr

Address of a structure containing the internet address of the host whose Port Mapper is being
called.

Description

The prap_get maps routine returns alist of current RPC server-to-Port M appings on the host at
addr. The list structure is defined in the PMAP_PROT.H file.

The MULTINET SHOW /RPC_PORTMAP command uses this routine.

Diagnostics

If an error occurs (for example, pmap_get maps cannot get alist of Port Mappings, the internet
addressisinvalid, or the remote Port Mapper does not exist), theroutine returns either NULL or the
address of the list.

See Also

pmap_get port, pmap_set, pmap_unset

10-2

pmap_getport RPC RTL Port Mapper Routines

pmap_getport

Returns the port number on which a specified service is waiting.

Format

u_short prmap_getport (struct sockaddr_in *addr,
u_long prognum u_long versnum u_long protocol);

Arguments

addr
Address of a structure containing the internet address of the remote host on which the server
resides.

prognum versnum protocol
See Table 10-1 in the RPC RTL Client Routines chapter for alist of these arguments.

Diagnostics

If the requested mapping does not exist or the routine fails to contact the remote Port Mapper, the
routine returns either the port number or zero.

The prap_get port routine uses the global variabler pc_createerr.rpc_createerr isa
structure that contains the most recent service creation error. User pc_cr eat eer r if you want the
service program to handle the error. The value of r pc_cr eat eer r is set by any RPC server
creation routine that does not succeed.

Therpc_creat eerr variableisdefined in the CLNT.H file.

See Also

pmap_get maps, pmap_set, pmap_unset

10-3

PART VI RPC Programming pmap_rmtcall

pmap_rmtcall

For

Arg

Requests the Port Mapper on aremote host to call a procedure on that host.

mat

enumclnt_stat prmap_rntcall (struct sockaddr_in *addr,

u_long prognum u_long versnum u_long procnum

xdrproc_t inproc, u_char *in, xdrproc_t outproc, u_char *out, struct
ti meval tout, u_long *portp)

uments

addr
Address of a structure containing the internet address of the remote host on which the server
resides.

prognum versnum procnum inproc, in, outproc, out
See Table 10-1 in the RPC RTL Client Routines chapter for alist of these arguments.

t out
Time allowed for the results to return to the client, in seconds and microseconds.

portp
Address where pnap_r nt cal | will write the port number of the remote service.

Description

Theprmap_rnt cal | routine allows you to get a port number and call aremote procedurein one
call. The routine requests a remote Port Mapper to call aprognum, versnum, and procnum on the
Port Mapper’s host. The remote procedure call uses the UDP transport.

If pmap_rnt cal | succeeds, it changes portp to contain the port number of the remote service.

After calling thepmap_r nt cal | routine, you may call thecl nt _per r no routine.

Diagnostics

This routine returns diagnostic values defined in the CLNT.H file for enuntl nt _st at .

See Also

10-4

cl nt _broadcast, clnt_perrno

pmap_set RPC RTL Port Mapper Routines

pmap_set
Registers a remote service with aremote port.

Format

bool _t pmap_set (u_long prognum u_long versnum
u_l ong protocol, u_short port);

Arguments

prognum versnum protocol
See Table 10-1 in the RPC RTL Client Routines chapter for alist of these arguments.

port
Remote port number.

Description

The prmap_set routine callsthe local Port Mapper to tell it which port and protocol the prognum,
versnumis using.

You are not likely to use prmap_set , because sve_r egi st er calsit.

Diagnostics
The pmap_set routine returns TRUE if it succeeds, and FALSE if it fails.

See Also

pmap_get port, pmap_get maps, pmap_unset, svc_register

10-5

PART VI RPC Programming pmap_unset

pmap_unset
Unregisters aservice so it isno longer mapped it to a port.

Format
bool _t pmap_unset (u_long prognum u_long versnun;
Arguments

prognum versnum
See Table 10-1 in the RPC RTL Client Routines chapter for alist of these arguments.

Description

The pmap_unset routine calls the local Port Mapper and, for all protocols, removes the prognum
and versnum from the list that maps servers to ports.

You are not likely to use pmap_unset , because sve_unr egi st er calsit.

Diagnostics
Thepmap_unset routine returns TRUE if it succeeds, FALSE if it fails.

See Also

pmap_get port, pmap_get maps, pmap_set, svc_unregister

10-6

Chapter 11

Introduction

RPC RTL Server Routines

This chapter is for RPC programmers. It documents the server routines in the RPC Run-Time
Library (RTL). These routines are the programming interface to RPC.

Server Routines

The server routines are called by the server program or the server stub procedures. Table 11-1 lists
each server routine and summarizes its purpose.

Table11-1 Server Routines

Routine Purpose

registerrpc Performs creation and registration tasks for server.

svc_destroy Macro that destroys RPC server handle.

svc_freeargs Macro that frees memory allocated when RPC arguments were decoded.

svc_getargs Macro that decodes RPC arguments.

svc_getcaller Macro that returns address of client that called server.

svc_getchan Macro that returns channel of server handle.

svc_getport Macro that returns port associated with server handle.

svc_getregset Reads data for each server connection.

svc_register Adds specified server to list of active servers, and registers service
program with Port Mapper.

111

PART VI RPC Programming

Table11-1 Server Routines (Continued)

Routine

Purpose

svc_run

Waitsfor RPC requestsand callssvc_get r eqset routineto dispatch
to appropriate RPC service program.

svc_sendreply

Sends results of remote procedure call to client.

SvC_unregister

Calls Port Mapper to unregister specified program and version for all
protocols.

svcerr_auth

Sends error code when server cannot authenticate client.

svcerr_decode

Sends error code to client if server cannot decode arguments.

svcerr_noproc

Sends error code to client if server cannot implement requested
procedure.

svcerr_noprog

Sends error code to client when requested program is not registered with
Port Mapper.

svcerr_progvers

Sends error code to client when requested program is registered with
Port Mapper, but requested version is not registered.

sveerr_systemerr

Sends error code to client when server encounters error not handled by
particular protocol.

svcerr_weakauth

Sends error code to client when server cannot perform remote procedure
call becauseit received insufficient (but correct) authentication
parameters.

svcfd_create Returns address of structure containing server handle for specified TCP
socket.
svctep_create Returns address of server handle that uses TCP transport.

svcudp_bufcreate

Returns address of server handle that uses UDP transport. For
procedures that pass messages longer than 8K bytes.

svcudp_create

Returns address of server handle that uses UDP transport. For
procedures that pass messages shorter than 8Kbytes.

svcudp_enablecache

Enables X1D cache for specified UDP transport server.

Xprt_register

Adds UDP or TCP server socket to list of sockets.

Xprt_unregister

Removes UDP or TCP server socket from list of sockets.

The following sections describe each server routine in detail.

11-2

registerrpc RPC RTL Server Routines

registerrpc
Performs creation and registration tasks for the server.

Format

#i ncl ude
int registerrpc (u_long prognum u_long versnum u_long procnum
u_char *(*procnane) (), xdrproc_t inproc, xdrproc_t outproc);

Arguments

prognum versnum procnum inproc, outproc
See Table 10-1 in the RPC RTL Client Routines chapter for alist of these arguments.

procnane

Address of the routine that implements the service procedure. The routine uses the following
format:

u_char *procnane(out);
u_char *out;

where out isthe address of the data decoded by out pr oc.

Description
Ther egi st er r pc routine performs the following tasks for a server:

* Createsa UDP server handle.
* Cadlsthesvc_regi st er routineto register the program with the Port Mapper.

* Adds pr ognum ver snum and pr ocnumto an internal list of registered procedures. When the
server receives arequest, it uses thislist to determine which routine to call.

A server should call r egi st er r pc for every procedure it implements, except for the NULL
procedure.

Diagnostics
Ther egi st err pc routine returns zero if it succeeds, and -1 if it fails.

See Also

svc_register

11-3

PART VI RPC Programming svc_destroy

svc_destroy
Macro that destroys the RPC server handle.

Format

voi d svc_destroy (SVCXPRT *xprt);

Argument

xprt
RPC server handle.

Description

Thesvc_dest r oy routine destroys xprt by deall ocating private data structures. After thiscall, xprt
is undefined.

If the server creation routine received RPC_ANY SOCK as the socket, svc_dest r oy closes the
socket. Otherwise, you must close the socket.

See Also

svcfd_create, svctcp_create, svcudp_create

11-4

svc_freeargs RPC RTL Server Routines

svc_freeargs
Macro that frees the memory that was allocated when the RPC arguments were decoded.

Format

bool _t svc_freeargs (SVCXPRT *xprt, xdrproc_t xdr_args,
char *args_ptr);

Arguments

xprt, xdr_args, args_ptr
See Table 10-1 in the RPC RTL Client Routines chapter for alist of these arguments.

Description
Thesvc_freeargs routine calsthexdr _free routine.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

svc_getargs, xdr_free

11-5

PART VI RPC Programming svc_getargs

svc_getargs
Macro that decodes the RPC arguments.

Format

bool _t svc_getargs (SVCXPRT *xprt, xdrproc_t xdr_args,
u_char *args _ptr);

Arguments

xprt, xdr_args, args_ptr
See Table 10-1 in the RPC RTL Client Routines chapter for alist of these arguments.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

See Also

svc_freeargs

11-6

svc_getreqset RPC RTL Server Routines

SVC_(Q etreqset
Reads data for each server connection.

Format

#i ncl ude

voi d svc_getreqgset (int rdfds);

Argument

rdfds
Address of the read socket descriptor array. This array is returned by the sel ect routine.

Description
The server callssvc_get regset whenit receives an RPC request. Thesvc_get r egset routine
reads in data for each server connection, then calls the server program to handle the data.

Thesvc_get regset routine does not return avalue. It finishes executing after all rdfds sockets
have been serviced.

You are unlikely to call thisroutine directly, because thesvc_r un routine callsit. However, there
are times when you cannot call svc_r un. For example, suppose a program services RPC requests
and reads or writes to another socket at the same time. The program cannot call svc_r un. It must
call sel ect andsvc_getreqgset.

Thesvc_get reqgset routineisfor serversthat implement custom asynchronous event processing,
do not usethe svc_r un routine.

You may use the global variablesvc_f dset withsvc_getreqgset. Thesvc_fdset variable
listsall socketsthe server isusing. It contains an array of structures, where each element is a socket
pointer and a service handle. It uses the following format:

struct sockarr svc_fdset [MAXSOCK +1];

Thisishow to usesvc_f dset : first, copy the socket handles from svc_f dset into atemporary
array that ends with a zero. Pass the array to the sel ect routine. The sel ect routine overwrites
the array and returnsiit. Passthis array to thesvc_get r egset routine.

You may usesvc_f dset when the server does not usesvc_r un.

Thesvc_f dset variableisnot compatible with UNIX.

11-7

PART VI RPC Programming svc_getreqgset

Example
#def i ne MAXSOCK 10
i nt readf ds[MAXSOCK+1], /* sockets to select from*/
i, g
for(i =0, j =0; i < MAXSOCK; i++)
if((svc_fdset[i].socknane = 0) & (svc_fdset[i].socknanme !=
1))
readfds[j ++] = svc_fdset[i].socknane;
readfds[j] = O; /* list of sockets ends w a zero */
switch(select(0, readfds, 0, 0, 0))
{
case -1: /* an error happened */
case O: [* time out */
br eak;
defaul t: /* 1 or nore sockets ready for reading */
errno = 0;
ONCRPC_SVC_GET_REQSET(readfds);
if(errno == ENETDOM || errno == ENOTCONN)
sys$exit (SS$_TH RDPARTY) ;
}
See Also
sve_run

11-8

svc_register RPC RTL Server Routines

sSvc_register
Adds the specified server to alist of active servers, and registers the service program with the Port
Mapper.

Format

#i ncl ude

bool _t svc_register (SVCXPRT *xprt, u_long prognum
u_l ong versnum void (*dispatch) (), u_long protocol);

Arguments

Xprt, prognum versnum
See Table 10-1 in the RPC RTL Client Routines chapter for alist of these arguments.

di spatch

Routinethat svc_r egi st er callswhen the server receives arequest for pr ognum ver snum This
routine determines which routine to call for each server procedure. This routine uses the following
form:

void dispatch(regquest, xprt)

struct svc_req *request;

SVCXPRT *xprt;

Thesvc_getregset andsvc_r un routines call dispatch.
protocol

Must be IPPROTO_UDP, IPPROTO_TCP, or zero. Zero indicates that you do not want to register
the server with the Port Mapper.

Diagnostics
Thesvc_regi st er routinereturns TRUE if it succeeds and FALSE if it fails.

See Also

pmap_set, svc_getregset, svc_unregister

11-9

PART VI RPC Programming svc_run

svec_run

Waits for RPC requests and callsthesvc_get r egset routine to dispatch to the appropriate RPC
service program.

Format
#i ncl ude
voi d svc_run()

Arguments
None.

Description

Thesvc_run routine calsthe sel ect routineto wait for RPC requests. When a request arrives,
svc_run calsthesvc_getregset routine. Thensvc_run calssel ect again.

Thesvc_r un routine never returns.

You may use the global variablesvc_f dset withsvc_run. Seethesvc_get regset routinefor
more information onsvc_f dset .

See Also

svc_get regset

11-10

svc_sendreply RPC RTL Server Routines

svc_sendreply
Sends the results of aremote procedure call to the client.

Format

#i ncl ude
bool _t svc_sendreply (SVCXPRT *xprt, xdrproc_t outproc, caddr_t *out);

Arguments

xprt, outproc, out
See Table 10-1 in the RPC RTL Client Routines chapter for alist of these arguments.

Description
The routine sends the results of a remote procedure call to the client.

Diagnostics
These routines returns TRUE if they succeed and FAL SE if they fail.

11-11

PART VI RPC Programming svc_unregister

svc_unregister

Calls the Port Mapper to unregister the specified program and version for al protocols. The
program and version are removed from the list of active servers.

Format

#i ncl ude

voi d svc_unregister (u_long prognum u_long versnun;

Arguments

prognum versnum
See Table 10-1 in the RPC RTL Client Routines chapter for alist of these arguments.

See Also

pmap_unset, svc_register

11-12

svcerr_auth svcerr_decode svcerr_noproc svcerr_noprog Svcerr_progvers svcerr_systemerr
svcerr_weakauth RPC RTL Server Routines

svcerr_auth
svcerr_decode
svcerr_noproc
svcerr_noprog
svcerr_progvers
svcerr_systemerr

svcerr_weakauth
Sends various error codes to the client process.

Format

#i ncl ude

voi d svcerr_auth (SVCXPRT *xprt, enum auth_stat why);

voi d svcerr_decode (SVCXPRT *xprt);

voi d svcerr_noproc (SVCXPRT *xprt);

voi d svcerr_noprog (SVCXPRT *xprt);

voi d svcerr_progvers (SVCXPRT *xprt, u_long lowvers, u_long high-vers);
voi d svcerr_systenmerr (SVCXPRT *xprt);

voi d svcerr_weakauth (SVCXPRT *xprt);

Arguments

xprt
RPC server handle.

why
Error code defined in the AUTH.H file.

| ow vers
Lowest version number in the range of versions that the server supports.

hi gh-vers
Highest version in the range of versions that the server supports.

Description

svcerr_auth

Seesvc_getregset . Calssvcerr_aut h whenit cannot authenticate aclient. The
svcer r_aut h routine returns an error code (why) to the caller.

11-13

PART VI RPC Programming svcerr_auth svcerr_decode svcerr_noproc svcerr_noprog
svcerr_progvers svcerr_systemerr svcerr_weakauth

svcerr_decode
Sends an error code to the client if the server cannot decode the arguments.

svcerr_noproc
Sends an error code to the client if the server does not implement the requested procedure.

svcerr_noprog

Sends an error code to the client when the requested program is not registered with the Port
Mapper. Generally, the Port Mapper informs the client when a server is not registered. Therefore,
the server is unlikely to use this routine.

svcerr_progvers

Sends an error code to the client when the requested program is registered with the Port Mapper,
but the requested version is not registered.

svcerr_systemerr

Sends an error code to the client when the server encounters an error that is not handled by a
particular protocol.

svcerr_weakauth

Sends an error code to the client when the server cannot perform aremote procedure call because it
received insufficient (but correct) authentication parameters. Thisroutine callsthesvcerr _aut h
routine. The value of uhy is AUTH_TOOWEAK, which means "access permission denied.”

11-14

svcfd_create RPC RTL Server Routines

svcfd_create
Returns the address of a structure containing a server handle for the specified TCP socket.

Format
#i ncl ude

SVCXPRT *svcfd_create (int sock, u_long sendsize, u_long recvsize);

Arguments

sock
Socket number. Do not specify a file descriptor.

sendsi ze
Size of the send buffer. If you enter a value less than 100, then 4000 is used as the default.

recvsi ze
Size of the receive buffer. If you enter avalue less than 100, then 4000 is used as the defaullt.

Description

Thesvcf d_cr eat e routine returns the address of a server handle for the specified TCP socket.
This handle cannot use afile. The server callsthe svcf d_cr eat e routine after it acceptsa TCP
connection.

Diagnostics
This routine returns zero if it fails.

See Also

svctcp_create

11-15

PART VI RPC Programming svcraw_create

svcraw_create
Creates a server handle for memory-based Sun RPC for simple testing and timing.

Format

#i ncl ude
SVCXPRT svcraw create ();

Argument
None.

Description

Thesvcraw_cr eat e routine creates atoy Sun RPC service transport, to which it returns a pointer.
The transport isreally a buffer within the process's address space, so the corresponding client
should live in the same address space.

This routine allows simulation of and acquisition of Sun RPC overheads (such as round trip times)
without any kernel interference.

Diagnostics
Thisroutinereturns NULL if it fails.

See Also

clntraw create

11-16

svctcp_create RPC RTL Server Routines

svctcp_create
Returns the address of a server handle that uses the TCP transport.

Format
#i ncl ude

SVCXPRT *svctcp_create (int sock, u_long sendsize, u_long recvsize);

Arguments

sock

Socket for thisservice. Thesvct cp_cr eat e routine creates a new socket if you enter
RPC_ANY SOCK. If the socket is not bound to a TCP port, svct cp_cr eat e bindsit to an
arbitrary port.

sendsi ze
Size of the send buffer. If you enter a value less than 100, then 4000 bytesis used as the defaullt.

recvsi ze
Size of the receive buffer. If you enter avalue less than 100, then 4000 bytesis used as the default.

Diagnostics
Thesvct cp_cr eat e routine returns either the address of the server handle, or zero (if it could not

create the server handle).

See Also

svcfd_create, svc_destroy

11-17

PART VI RPC Programming svcudp_create / svcudp_bufcreate

svcudp_create / svcudp_bufcreate
Returns the address of a server handle that uses the UDP transport.

Format

#i ncl ude
SVCXPRT *svcudp_create (int sock);

SVCXPRT *svcudp_bufcreate (int sock, u_long sendsize,
u_l ong recvsize);

Arguments

sock

Socket for this service. The svcudp_cr eat e routine creates a new socket if you enter

RPC_ANY SOCK. If the socket isnot bound to aUDP port, thesvcudp_cr eat e routine bindsit to
an arbitrary port.

sendsi ze

Size of the send buffer. The minimum size is 100 bytes. The maximum size is 65468, the maximum
UDP packet size. If you enter a value less than 100, then 4000 is used as the default.

recvsi ze

Size of the receive buffer. The minimum size is 100 bytes. The maximum size is 65000, the
maximum UDP packet size. If you enter avalue less than 100, then 4000 is used as the default.

Description
Usethesvc_cr eat e routine only for procedures that pass messages shorter than 8K bytes long.

Usethesvcudp_buf cr eat e routine for procedures that pass messages longer than 8K bytes.

Diagnostics
These routines return either a server handle, or zero (if they could not create the server handle).

See Also

svc_destroy, svcudp_enabl ecache

11-18

svcudp_enablecache RPC RTL Server Routines

svcudp_enablecache
Enables the XID cache for the specified UDP transport server.

Format

bool _t svcudp_enabl ecache (SVCXPRT *xprt, u_long size);

Arguments

xprt
RPC server handle.

size
Number of entries permitted in the X1D cache. You may estimate this number based on how active
the server is, and on how long you want to retain old replies.

Description

Usethesvcudp_enabl ecache routine after a UDP server handleis created. The server places al
outgoing responsesin the X1D cache. The cache can be used to improve the performance of the
server, for example, by preventing the server from recal culating the results or sending incorrect
results.

You cannot disable the X1D cache for UDP servers.
The RPC Fundamentals, Chapter 6, provides more information on the X1D cache.

Example

#def i ne FALSE 0
#def i ne UDP_CACHE SIZE 10

SVCXPRT *udp_xprt;

udp_xprt = svcudp_create(RPC_ANYSCOCK) ;

i f(svcudp_enabl ecache(udp_xprts, UDP_CACHE SI ZE) == FALSE)
printf("Xl D cache was not enabl ed");
el se

printf("X D cache was enabl ed");

Diagnostics

This routine returns TRUE if it enablesthe X1D cache, and FAL SE if the cache was previously
enabled or an error occurs.

11-19

PART VI RPC Programming xprt_register

xprt_register
Adds aTCP or UDP server socket to alist of sockets.

Format
#i ncl ude

voi d xprt_register (SVCXPRT *xprt);
Argument

xprt
RPC server handle.

Description

Thexprt _register andxprt_unregi ster routines maintain alist of sockets. Thislist ensures
that the correct server is called to processthe request. Thexprt _r egi st er routine adds the server
socket tothesvc_f dset variable, which also stores the server handle that is associated with the
socket. Thesvc_r un routine passes the list of socketsto thesel ect routine. Thesel ect routine
returnsto svc_r un alist of sockets that have outstanding requests.

You are unlikely to call this routine directly because svc_r egi st er calsit.

See Also

svc_regi ster, xprt_unregister

11-20

xprt_unregister RPC RTL Server Routines

xprt_unregister
Removes a TCP or UDP server socket from alist of sockets.

Format

#i ncl ude

voi d xprt_unregi ster (SVCXPRT *xprt);
Argument

xprt
RPC server handle.

Description

Thislist of sockets ensures that the correct server is called to process the request. See the
xprt_regi ster routine for adescription of how thislist is maintained.

You are unlikely to call this routine directly because svc_unr egi st er calsit.

See Also

svc_unregi ster, xprt_register

11-21

Chapter 12
RPC RTL XDR Routines

Introduction

This chapter isfor RPC programmers. It documents the XDR routines in the RPC Run-Time
Library (RTL). These routines are the programming interface to RPC.

XDR Routines

This section explains what XDR routines do and when you would call them. It also provides quick
reference and detailed reference sections describing each XDR routine.

What XDR Routines Do
Most XDR routines share these characteristics:

* They convert datain two directions: from the host's local data format to XDR format (called
encoding or marshalling), or the other way around (called decoding or unmarshalling).

* They use xdr s, astructure containing instructions for encoding, decoding, and deallocating
memory.

* They return a boolean value to indicate success or failure.

Some XDR routines allocate memory while decoding an argument. To free this memory, call the
xdr _f r ee routine after the program is done with the decoded value.

12-1

PART VI RPC Programming

Table 12-1 shows the order in which XDR routines perform encoding and decoding.

Table12-1 XDR Actions

Client

Server

1. Encodes arguments 1. Decodes arguments
2. Decodes results
3. Freesresultsfrom memory | 3. Frees arguments from memory

2. Encodes results

When to Call XDR Routines

Under most circumstances, you are not likely to call any XDR routines directly. Thecl nt _cal |
and svc_sendr epl y routines call the XDR routines.

You would call the XDR routines directly only when you write your own routines to convert datato

or from XDR format.

Quick Reference
Table 12-2 lists the XDR routines that encode and decode data.

Table12-2 XDR Encoding and Decoding Routines

Thisroutine... Encodes and decodes...

xdr_array Variable-length array

xdr_bool Boolean value

xdr_bytes Bytes

xdr_char Character

xdr_double Double-precision floating point number

xdr_enum Enumerated type

xdr_float Floating point value

xdr_hyper VAX quad word to an XDR hyper-integer, or the other way

xdr_int Four-byte integer

xdr_long Longword

xdr_opaque Contents of a buffer (treats the data as afixed length of bytes and does not
attempt to interpret them)

12-2

RPC RTL XDR Routines

Table12-2 XDR Encoding and Decoding Routines (Continued)

Thisroutine... Encodes and decodes...

xdr_pointer Pointer to a data structure

xdr_reference Pointer to a data structure (the address must be non-zero)
xdr_short Two-byte unsigned integer

xdr_string Null-terminated string

xdr_u_char Unsigned character

xdr_u_hyper VAX quad word to an XDR unsigned hyper-integer
xdr_u_int Four-byte unsigned integer

xdr_u_long Unsigned longword

xdr_u_short Two-byte unsigned integer

xdr_union Union

xdr_vector Vector (fixed length array)

xdr_void Nothing

xdr_wrapstring Null-terminated string

Table 12-3 lists the X

DR routines that perform various support functions.

Table12-3 XDR Support Routines

Thisroutine...

Doesthis...

xdr_free

Deallocates a data structure from memory

xdrmem_create

Creates amemory buffer XDR stream

xdrrec_create

Creates arecord-oriented XDR stream

xdrrec_endofrecord

Marks the end of arecord

xdrrec_eof

Goes to the end of the current record, then verifies whether any more
data can be read

xdrrec_skiprecord

Goes to the end of the current record

xdrstdio_create

Initializesan st di o stream

12-3

PART VI RPC Programming

12-4

Table 12-4 lists the upper layer X DR routines that support RPC.

Table12-4 Upper Layer XDR Routines

Thisroutine...

Encodes and decodes...

xdr_accepted reply

Part of an RPC reply message after the reply is accepted

xdr_authunix_parms

UNIX-style authentication information

xdr_callhdr Static part of an RPC request message header (encoding only)
xdr_callmsg RPC request message
xdr_netobj Datainthenet obj structure

xdr_opague_auth

Authentication information

xdr_pmap

Port M apper parameters

xdr_pmaplist

List of Port Mapping data

xdr_rejected_reply

Part of an RPC reply message after the reply isrejected

xdr_replymsg

RPC reply header; it then calls the appropriate routine to convert the
rest of the message

The following sections describe each XDR routine in detail.

xdr_accepted_reply RPC RTL XDR Routines

xdr_accepted _reply
Converts an RPC reply message from local format to XDR format, or the other way around.

Format

#i ncl ude

bool _t xdr_accepted_reply (XDR *xdrs, struct accepted_reply *ar);
Arguments

xdrs
Address of a structure containing XDR encoding and decoding information.

ar
Address of the structure containing the RPC reply message.

Description
Thexdr _repl ynsg routine callsthexdr _accept ed_r epl y routine.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr _repl ynmsg

12-5

PART VI RPC Programming xdr_array

xdr_array
Converts a variable-length array from local format to XDR format, or the other way around.

Format
#i ncl ude

bool _t xdr_array (XDR *xdrs, u_char **addrp, u_long *sizep, u_l ong
maxsize, u_long elsize, xdrproc_t elproc);

Arguments

xdrs
Address of a structure containing XDR encoding and decoding information.

addrp
Address of the address containing the array being converted. If addrp is zero, then xdr _ar r ay
alocates ((*si zep) *el si ze) number of bytes when it decodes.

sizep
Address of the number of elementsin the array.

maxsi ze
Maximum number of elements the array can hold.

el size
Size of each element, in bytes.

el proc
XDR routine that handles each array element.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

12-6

xdr_authunix_parms RPC RTL XDR Routines

xdr_authunix_parms

Converts UNIX-style authentication information from local format to XDR format, or the other
way around.

Format

#i ncl ude

bool _t xdr_aut huni x_parns (XDR *xdrs, struct authunix_parnms *aupp);
Arguments

xdrs
Address of a structure containing XDR encoding and decoding information.

aupp
UNIX-style authentication information being converted.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

12-7

PART VI RPC Programming xdr_bool

xdr_bool
Converts a boolean value from local format to XDR format, or the other way around.

Format

#i ncl ude
bool _t xdr_bool (XDR *xdrs, bool _t *bp);
Arguments

xdrs
Address of a structure containing XDR encoding and decoding information.

bp
Address of the boolean value.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

12-8

xdr_bytes RPC RTL XDR Routines

xdr_bytes

Converts bytes from local format to XDR format, or the other way around.

Format

#i ncl ude

bool _t xdr_bytes (XDR *xdrs, u_char **cpp, u_long *sizep, u_long maxsize);
Arguments

xdrs
Address of a structure containing XDR encoding and decoding information.

cpp
Address of the address of the buffer containing the bytes being converted. If *cpp is zero,
xdr _byt es alocates maxsize bytes when it decodes.

sizep
Address of the actual number of bytes being converted.

maxsi ze
Maximum number of bytes that can be used. The server protocol determines this number.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

12-9

PART VI RPC Programming xdr_callhdr

xdr_callhdr
Encodes the static part of an RPC request message header.

Format

#i ncl ude

bool _t xdr_call hdr (XDR *xdrs, struct rpc_nsg *chdr);

Arguments

xdrs
Address of a structure containing XDR encoding and decoding information.

chdr
Address of the data being converted.

Description

Thexdr _cal | hdr routine converts the following fields: transaction ID, direction, RPC version,
server program number, and server version. It converts the last four fields once, when the client
handle is created.

Thecl nttcp_create andcl ntudp_cr eat e routinescal thexdr _cal | hdr routine.

Diagnostics
This routine aways returns TRUE.

See Also

clnt_call, clnttcp_create, cl ntudp_create, xdr_cal | nsg

12-10

xdr_callmsg RPC RTL XDR Routines

xdr_callmsg
Converts an RPC request message from local format to XDR format, or the other way around.

Format

#i ncl ude

bool _t xdr_callnsg (XDR *xdrs, struct rpc_nsg *cnsg);

Arguments

xdrs
Address of a structure containing XDR encoding and decoding information.

cnsg
Address of the message being converted.

Description

The xdr _cal | nsg routine converts the following fields: transaction ID, RPC direction, RPC
version, program number, version number, procedure number, client authentication.

Thepmap_rntcal | ,svc_sendrepl y,and svc_sendrepl y_dq routines call xdr _cal | nsg.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also
xdr_callhdr

12-11

PART VI RPC Programming xdr_char

xdr_char
Converts a character from local format to XDR format, or the other way around.

Format

#i ncl ude
bool _t xdr_char (XDR *xdrs, char *cp);
Arguments

xdrs
Address of a structure containing XDR encoding and decoding information.

cp
Address of the character being converted.

Description
This routine provides the same functionality asthexdr _u_char routine.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also
xdr_u_char

12-12

xdr_double RPC RTL XDR Routines

xdr_double
Converts a double-precision floating point number between local and XDR format.

Format

#i ncl ude

bool _t xdr_doubl e (XDR *xdrs, double *dp);

Arguments

xdrs
Pointer to an XDR stream handle created by one of the XDR stream handle creation routines.

dp
Pointer to the double-precision floating point number.

Description

This routine provides afilter primitive that translates between double-precision numbers and their
external representations. It is actually implemented by four XDR routines:

xdr _doubl e_D Converts VAX D format floating point numbers
xdr _double_G Converts VAX G format floating point numbers
xdr _double_T Converts IEEE T format floating point numbers
xdr _doubl e_X Converts IEEE X format floating point numbers

You can reference these routines explicitly or you can use compiler settings to control which
routine is used when you reference the xdr _doubl e routine.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

12-13

PART VI RPC Programming xdr_enum

xdr_enum
Converts an enumerated type from local format to XDR format, or the other way around.

Format

#i ncl ude
bool _t xdr_enum (XDR *xdrs, enumt *ep);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

ep
Address containing the enumerated type.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

12-14

xdr_float RPC RTL XDR Routines

xdr_float
Converts a floating point value from local format to XDR format, or the other way around.

Format
#i ncl ude

bool _t xdr_float (XDR *xdrs, float *fp);

Arguments

xdrs
Pointer to an XDR stream handle created by one of the XDR stream handle creation routines.

fp
Pointer to a single-precision floating point number.

Description

This routine provides afilter primitive that translates between double-precision numbers and their
external representations. It is actually implemented by four XDR routines:

xdr_float F Converts VAX F format floating point numbers

xdr_float_S Converts IEEE T format floating point numbers

You can reference these routines explicitly or you can use compiler settings to control which
routine is used when you reference the xdr _f | oat routine.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

12-15

PART VI RPC Programming xdr_free

xdr_free
Deallocates a data structure from memory.

Format

#i ncl ude
voi d xdr_free (xdrproc_t proc, u_char *objp);
Arguments

proc
XDR routine that describes the data structure.

obj p
Address of the data structure.

Description
Call this routine after decoded datais no longer needed. Do not call it for encoded data.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

12-16

xdr_hyper RPC RTL XDR Routines

xdr_hyper

Convertsa VAX quad word to an XDR hyper-integer, or the other way around.

Format
bool _t xdr_hyper (XDR *xdrs, quad *ptr);
Arguments

xdrs
Address of a structure containing XDR encoding and decoding information.

ptr
Address of the structure containing the quad word. The quad word is stored in standard VAX quad
word format, with the low-order longword first in memory.

Description
This routine provided the same functionality asthexdr _u_hyper routine.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

See Also

xdr _u_hyper

12-17

PART VI RPC Programming xdr_int

xdr_int
Converts one four-byte integer from local format to XDR format, or the other way around.

Format

#i ncl ude

bool _t xdr_int (XDR *xdrs, int *ip);
Arguments

xdrs
Address of a structure containing XDR encoding and decoding information.

ip
Address containing the integer.
Description
This routine provides the same functionality asthexdr _u_i nt, xdr _I ong, and xdr _u_I ong

routines.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_int, xdr_long, xdr_u_Ilong

12-18

xdr_long RPC RTL XDR Routines

xdr_long
Converts one longword from local format to XDR format, or the other way around.

Format

#i ncl ude

bool _t xdr_long (XDR *xdrs, u_long */p);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

I'p
Address containing the longword.

Description
This routine provides the same functionality asthexdr _u_I ong, xdr _i nt, and xdr _u_i nt

routines.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_u_l ong, xdr_int, xdr_u_int

12-19

PART VI RPC Programming xdr_netobj

xdr_netobj

Convertsdatain the net obj structure from the local dataformat to XDR format, or the other way
around.

Format

bool _t xdr_netobj (XDR *xdrs, netobj *ptr);

Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

ptr
Address of the following structure:

typedef struct

{
u_long n_len;
byte *n_bytes;
} netobj;

This structure defines the data being converted.
Description
Thenet obj structureis an aggregate data structure that is opaque and contains a counted array of

1024 bytes.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

12-20

xdr_opaque RPC RTL XDR Routines

xdr_opaque

Converts the contents of a buffer from the local dataformat to XDR format, or the other way
around. This routine treats the data as afixed length of bytes and does not attempt to interpret them.

Format
#i ncl ude

bool _t xdr_opaque (XDR *xdrs, char *cp, u_long cnt);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

cp
Address of the buffer containing opaque data.

cnt
Byte length.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

12-21

PART VI RPC Programming xdr_opaque_auth

xdr_opaque_auth
Converts authentication information from the local dataformat to XDR format, or the other way
around.

Format

#i ncl ude

bool _t xdr_opaque_auth (XDR *xdrs, struct opaque_auth *ap);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

ap

Address of the authentication information. This data was created by the aut hnone_cr eat e,
aut huni x_creat e, or aut huni x_creat e_defaul t routine.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

12-22

xdr_pmap RPC RTL XDR Routines

xdr_pmap

Converts Port Mapper parameters from the local data format to XDR format, or the other way
around.

Format

#i ncl ude "MJLTI NET_I| NCLUDE: PMAP_PROT. H'

bool _t xdr_prmap (XDR *xdrs, struct pnmap *regs);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

regs

Address of a structure containing the program number, version number, protocol number, and port
number. Thisis the data being converted.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

12-23

PART VI RPC Programming xdr_pmaplist

xdr_pmaplist

Convertsalist of Port Mapping data from the local data format to XDR format, or the other way
around.

Format

#i ncl ude " TCPI PSRPC. PMAP_PROT. H'

bool _t xdr_pmaplist (XDR *xdrs, struct pnaplist **rpp);

Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

rpp

Address of the address of the structure containing Port Mapper data. If thisroutine is used to
decode a Port Mapper listing, rpp is set to the address of the newly allocated linked list of
structures.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

12-24

xdr_pointer RPC RTL XDR Routines

xdr_pointer

Converts arecursive data structure from the local data format to XDR format, or the other way
around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_pointer (XDR *xdrs, u_char **objpp, u_long obj_size,
xdrproc_t xdr_obj);

Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

obj pp
Address of the address containing the data being converted. May be zero.

obj _size
Size of the data structure in bytes.

xdr _obj
XDR routine that describes the object being pointed to. This routine can describe complex data
structures, and these structures may contain pointers.

Description

An XDR routine for a data structure that contains pointers to other structures, such asalinked list,
would call the xdr _poi nt er routine. The xdr _poi nt er routine encodes a pointer from an
address into a boolean. If the boolean is TRUE, the data follows the boolean.

Example

bool _t xdr_pointer(xdrs, objpp, obj_size, xdr_obj)

XDR *xdrs;
char **obj pp;
| ongw obj _si ze;
xdr proc_t xdr _obj ;
{
bool _t nore_dat a;
/*

** determine if the pointer is a valid address (0 is invalid)
*/
if(*objpp !'= NULL)

12-25

PART VI RPC Programming xdr_pointer

/*

* %

* %

*/

/*
* %

* *

*/

/*
* %

* %

* %

*/

nore_data = TRUE;
el se
nore_data = FALSE;

XDR the flag
If we are decoding, then nore_data is overwitten.
i f(!'xdr_bool (xdrs, &mre_data))
return(FALSE);

If there is no nore data, set the pointer to O (No effect if we
wer e encodi ng) and return TRUE

if(!'nore_data)
{
*obj pp = NULL;
return(TRUE);
}

O herwi se, call xdr_reference. The result is that xdr_pointer is
the sane as xdr_reference, except that xdr_pointer adds a Bool ean
to the encoded data and will properly handle NULL pointers.

return(xdr_reference(xdrs, objpp, obj_size, xdr_obj));

} /* end function xdr_pointer() */

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

12-26

xdr_reference RPC RTL XDR Routines

xdr_reference
This routine recursively converts a structure that is referenced by a pointer inside the structure.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_reference (XDR *xdrs, u_char **objpp, u_long obj_size,
xdrproc_t xdr_obj);

Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

obj pp

Address of the address of a structure containing the data being converted. If objpp is zero, the
xdr _r ef er ence routine allocates the necessary storage when decoding. This argument must be
non-zero when encoding.

When xdr _r ef er ence encodes data, it passes * obj pp to xdr_obj . When decoding,
xdr _r ef er ence alocates memory if * obj pp equals zero.

obj _size
Size of the referenced structure.

xdr_obj

XDR routine that describes the object being pointed to. This routine can describe complex data
structures, and these structures may contain pointers.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

12-27

PART VI RPC Programming xdr_rejected_reply

xdr_rejected_reply
Converts the remainder of an RPC reply message after the header indicates that thereply is
rejected.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_rejected_reply (XDR *xdrs, struct rejected_reply *rr);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

rr
Address of the structure containing the reply message.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

12-28

xdr_replymsg RPC RTL XDR Routines

xdr_replymsg
Converts the RPC reply header, then calls the appropriate routine to convert the rest of the message.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_replynsg (XDR *xdrs, struct rpc_nsg *rnsg);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

rnsg
Address of the structure containing the reply message.

Description

Thexdr _repl ynsg routine calsthexdr _rej ected_reply or xdr _accept ed_r epl y routine
to convert the body of the RPC reply message from the local data format to XDR format, or the
other way around.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_accepted_reply, xdr_rejected_reply

12-29

PART VI RPC Programming xdr_short

xdr_short
Converts atwo-byte integer from the local dataformat to XDR format, or the other way around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_short (XDR *xdrs, short *sp);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

sp
Address of the integer being converted.

Description
This routine provides the same functionality asxdr _u_short.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr _u_short

12-30

xdr_string RPC RTL XDR Routines

xdr_string

Converts a null-terminated string from the local data format to XDR format, or the other way
around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_string (XDR *xdrs, char **cpp, u_l ong naxsize);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

cpp
Address of the address of the first byte in the string.

maxsi ze
Maximum length of the string. The service protocol determines thisvalue.

Description
Thexdr _stri ng routine isthe same asthe xdr _wr apst ri ng routine, except xdr _stri ng

allows you to specify the maxsi ze.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_wrapstring

12-31

PART VI RPC Programming xdr_u_char

xdr_u_char
Converts an unsigned character from local format to XDR format, or the other way around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_u_char (XDR *xdrs, u_char bp);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

bp
Address of the character being converted.

Description
This routine provides the same functionality asxdr _char.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr _char

12-32

xdr_u_hyper RPC RTL XDR Routines

xdr_u_hyper
Convertsa VAX quad word to an XDR unsigned hyper-integer, or the other way around.

Format
bool _t xdr_u_hyper (XDR *xdrs, quad *ptr);
Arguments

xdrs
Address of a structure containing XDR encoding and decoding information.

ptr
Address of the structure containing the quad word. The quad word is stored in standard VAX
format, with the low-order longword first in memory.

Description
This routine provides the same functionality asthe xdr _hyper routine.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

See Also

xdr _hyper

12-33

PART VI RPC Programming xdr_u_int

xdr_u_int
Converts a four-byte unsigned integer from local format to XDR format, or the other way around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_u_int (XDR *xdrs, int *ip);
Arguments

xdrs
Address of a structure containing XDR encoding and decoding information.

ip
Address of the integer.

Description
This routine provides the same functionality asxdr _i nt, xdr _I ong, and xdr _u_1I ong.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr _int

12-34

xdr_u_long RPC RTL XDR Routines

xdr_u_long
Converts an unsigned longword from local format to XDR format, or the other way around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_u_long (XDR *xdrs, u_long */p);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

I'p
Address of the longword.

Description
This routine provides the same functionality asxdr _| ong, xdr _i nt, and xdr _u_i nt..

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_long, xdr_int, xdr_u_int

12-35

PART VI RPC Programming xdr_u_short

xdr_u_short

Converts a two-byte unsigned integer from the local dataformat to XDR format, or the other way
around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_u_short (XDR *xdrs, u_short *sp);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

sp
Address of the integer being converted.

Description
This routine provides the same functionality asxdr _short.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr _short

12-36

xdr_union RPC RTL XDR Routines

xdr_union
Converts a union from the local dataformat to XDR format, or the other way around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_union (XDR *xdrs, enumt *dscnp, u_char *unp, xdr_discrim
*choi ces, xdrproc_t dfault);

Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

dscnp
Integer from the choices array.

unp
Address of the union.

choi ces
Address of an array. This array maps integers to XDR routines.

df aul t
XDR routine that is called if the dscnp integer is not in the choices array.

Description

The xdr _uni on routine searches the array choices for the value of dscmp. If it finds the value, it
calls the corresponding X DR routine to process the remaining data. If xdr _uni on doesn't find the
value, it callsthe df aul t routine.

Diagnostics
This routine returns TRUE if it succeeds and FAL SE if it fails.

12-37

PART VI RPC Programming xdr_vector

xdr_vector

Converts avector (fixed length array) from the local dataformat to XDR format, or the other way
around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_vector (XDR *xdrs, u_char *basep, u_long nelem u_long el nsize,
xdrproc_t xdr_elem;

Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

basep
Address of the array.

nel em
Number of elementsin the array.

el nsi ze
Size of each element.

xdr_el em
Converts each element from the local data format to XDR format, or the other way around.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

12-38

xdr_void RPC RTL XDR Routines

xdr_void
Converts nothing.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_void (XDR *xdrs, u_char *ptr);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

ptr
Ignored.

Description
Use thisroutine as a place-holder for a program that passes no data. The server and client expect an

XDR routine to be called, even when there is no data to pass.

Diagnostics
This routine aways returns TRUE.

12-39

PART VI RPC Programming xdr_wrapstring

xdr_wrapstring
Converts a null-terminated string from the local data format to XDR format, or the other way
around.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdr_wrapstring (XDR *xdrs, char **cpp);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

cpp
Address of the address of the first byte in the string.

Description

Thexdr _wr apstring routine callsthexdr _st ri ng routine. Thexdr _wr apst ri ng routine
hides the maxsi ze argument from the programmer. Instead, the maximum size of the string is

assumed to be 232 - 1.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdr_string

12-40

xdrmem_create RPC RTL XDR Routines

xdrmem_create
Creates a memory buffer XDR stream.

Format

#i ncl ude tcpi p$rpc: xdr. h

voi d xdrmem create (XDR *xdrs, u_char *addr, u_long size, enum xdr_op op);

Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

addr
Address of the buffer containing the encoded data.

si ze
Size of the addr buffer.

op
Operations you will perform on the buffer. Valid values are XDR_ENCODE, XDR _DECODE, and
XDR_FREE. You may change this value.

Description

The xdr mem cr eat e routineinitializes a structure so that other XDR routines can writeto a
buffer.

12-41

PART VI RPC Programming xdrrec_create

xdrrec_create
Creates a record-oriented X DR stream.

Format

#i ncl ude tcpi p$rpc: xdr. h

voi d xdrrec_create (XDR *xdrs, u_long sendsize, u_long recvsize,
u_char *tcp_handle, int (*readit)(), int (*witeit)();

Arguments

xdrs

Address of the structure being created. The xdr r ec_cr eat e routine will write XDR encoding and
decoding information to this structure.

sendsi ze
Size of the send buffer in bytes. The minimum size is 100 bytes. If you specify fewer than 100
bytes, 4000 bytesis used as the default.

recvsi ze

Size of the receive buffer in bytes. The minimum size is 100 bytes. If you specify fewer than 100
bytes, 4000 bytesis used as the default.

tcp_handl e
Address of the client or server handle.

readit

Address of a user-written routine that reads data from the stream transport. This routine must use
the following format:

int readit(tcp_handle, buffer, Ilen)
u_char *tcp_handle;

u_char *buffer;

u_long len;

where* t cp_handl! e istheclient or server handle, * buf f er isthe buffer to fill, and / en isthe
number of bytesto read. The r eadi t routine returns either the number of bytesread, or -1 if an
€rror occurs.

12-42

xdrrec_create RPC RTL XDR Routines

witeit
Address of auser-written routine that writes data to the stream transport. This routine must use the
following format:

int witeit(tcp_handle, buffer, [|en)
u_char *tcp_handl e;

u_char *buffer;

u_long /en;

— tcp_handl e is the client or server handle.
— buffer is the address of the buffer being written.
— I enis the number of bytes to write.

Thewriteit routine returns either the number of bytes written, or -1 if an error occurs.

Description
Thexdrrec_creat e routine requires one of the following:

* The TCP transport
¢ A stream-oriented interface (such asfile 1/0O) not supported by MultiNet. The stream consists of
data organized into records. Each record is either an RPC request or reply.

Thecl nttcp_create andsvcf d_creat e routines call thexdr rec_cr eat e routine.

See Also

clnttcp_create, svcfd_create, xdrrec_endofrecord, xdrrec_eof,
xdrrec_ski precord

12-43

PART VI RPC Programming xdrrec_endofrecord

xdrrec_endofrecord
Marks the end of arecord.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdrrec_endofrecord (XDR *xdrs, bool _t sendnow;

Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

sendnow

Indicates when the calling program will send the record tothe wri t ei t routine (see
xdrrec_create).

If sendnow is TRUE, xdr r ec_endof r ecor d sends the record now. If sendnowis FALSE,
xdrrec_endof r ecor d writesthe record to a buffer and sends the buffer when it runs out of buffer
space.

Description

A client or server program calls thexdr r ec_endof r ecor d routine when it reaches the end of a
record it iswriting. The program must call the xdr r ec_cr eat e routine before calling
xdrrec_endofrecord.

Diagnostics
This routine returns TRUE if it succeeds and FALSE if it fails.

See Also

xdrrec_create, xdrrec_eof, xdrrec_skiprecord

12-44

xdrrec_eof RPC RTL XDR Routines

xdrrec_eof
Goes to the end of the current record, then verifies whether any more data can be read.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdrrec_eof (XDR *xdrs);

Argument

xdrs
Address of the structure containing XDR encoding and decoding information.

Description
The client or server program must call the xdr r ec_cr eat e routine before calling xdr r ec_eof .

Diagnostics
Thisroutine returns TRUE if it reaches the end of the data stream, and FALSE if it finds more data
to read.

See Also

xdrrec_create, xdrrec_endofrecord, xdrrec_skiprecord

12-45

PART VI RPC Programming xdrrec_skiprecord

xdrrec_skiprecord
Goes to the end of the current record.

Format

#i ncl ude tcpi p$rpc: xdr. h

bool _t xdrrec_skiprecord (XDR *xdrs);

Argument

xdrs
Address of the structure containing XDR encoding and decoding information.

Description

A client or server program callsthe xdr r ec_ski pr ecor d routine before it reads data from a
stream. This routine ensures that the program starts reading a record from the beginning.

Thexdrrec_ski precord routineis similar to thexdr r ec_eof routine, except that
xdrrec_ski precor d does not verify whether any more data can be read.

The client or server program must call thexdr r ec_cr eat e routine before calling
xdrrec_ski precord.

Diagnostics
This routine returns TRUE if it has skipped to the start of arecord. Otherwise, it returns FAL SE.

See Also

xdrrec_create, xdrrec_endofrecord, xdrrec_eof

12-46

xdrstdio_create RPC RTL XDR Routines

xdrstdio_create
Initializesast di o XDR stream.

Format

#i ncl ude tcpi p$rpc: xdr. h

voi d xdrstdio_create (XDR *xdrs, FILE *file, enum xdr_op op);
Arguments

xdrs
Address of the structure containing XDR encoding and decoding information.

file
File pointer FI LE *, which isto be associated with the stream.

op
An XDR operation, one of; XDR_ENCODE, XDR_DECCDE, or XDR_FREE.

Description

The xdr st di o_cr eat e routine initializes an stdio stream for the specified file.

12-47

PART I

Appendix A
Appendix B
Appendix C
Appendix D

Appendices

Example TCP Client Program
Example TCP Server Programs
Example UDP Client Program
Example UDP Server Programs

Appendix A

Example TCP Client Program

The following is an example of a TCP client that connects to the TCP ECHO port on the local
machine, and echos what the user types through it.

If you have installed the library and include files, the following program is provided as
MULTINET_ROOT:[MULTINET.EXAMPLES|TCPECHOCLIENT.C.

#include "mul tinet _root:[nmultinet.include.sys]types.h"
#include "mul tinet _root:[multinet.include.sys]socket.h"
#include "multinet _root:[multinet.include.netinet]in.h"
#i ncl ude <stdio. h>

#include "mul tinet_root:[nultinet.include]netdb.h"

mai n()

{ .
int s, n;
char buf[256];
struct sockaddr _in sin;
struct hostent *hp;
struct servent *sp;

/*

* Cet the I P address of the host named "LOCALHOST".
* This is the | oopback address for ourselves

*/

hp = get host bynanme("| ocal host");

if (hp == NULL) {
fprintf(stderr, "tcpechoclient: |ocal host unknown\n");
exi t (0x10000000) ;

}

/*

* Create an | P-famly socket on which to nake
* the connection

*/

s = socket (hp->h_addrtype, SOCK_STREAM 0);

if (s <0) {

A-1

Example TCP Client Program

socket _perror("tcpechoclient: socket");
exi t (0x10000000) ;

}
/*
* Get the TCP port nunmber of the "echo" server.
*
* This is commented out, but left as an exanple. W
* hardwire port 500 to talk to the TCPECHOSERVER
* prograns.
*

/

#i f def not def
sp = getservbynane("echo", "tcp");
if (sp == NULL) {
fprintf(stderr
"tcpechoclient: echo/tcp: unknown service\n");
exi t (0x10000000) ;
}
#endi f not def
/*
* Create a "sockaddr_in" structure which describes
* the renote | P address we want to connect to (from
* gethostbyname()) and the renote TCP port numnber
* (from getservbynane()).
*/

sin.sin_fam |y = hp->h_addrtype

bcopy(hp->h_addr, &sin.sin_addr, hp->h_Ilength);
#i f def not def

sin.sin_port = sp->s_port;
#el se

sin.sin_port = htons(500);
#endi f not def
/*
* Connect to that address..
*/

if (connect(s, &sin, sizeof (sin)) < 0) {
socket _perror("tcpechoclient: connect");
exi t (0x10000000) ;

}
/*
* Now go into a | oop, reading data from
* the network, witing it to the termna
* and reading data fromthe term nal
* witing it to the network..
*/

A-2

Example TCP Client Program

while ((n = socket_read(s, buf, sizeof(buf))) > 0) {
wite(1l, buf, n);
if (!fgets(buf, sizeof(buf), stdin)) break;
socket _write(s, buf, strlen(buf));

}

if (n<0) {
socket _perror("tcpechoclient: socket_read");
exi t (0x10000000) ;

}
exit(1);

A-3

Appendix B

Example TCP Server Programs

Standalone TCP Server

Thefollowing is an example of a TCP server that listens on the TCP ECHO port for connectionsto
the local machine, reads data from the connection and sends it back out.

If you have installed the MultiNet Programmers’ Kit, you will find the following program on-line
as MULTINET_ROOT:[MULTINET.EXAMPLES]TCPECHOSERVER-STANDALONE.C.

#include "mul tinet _root:[multinet.include.sys]types.h"
#include "mul tinet _root:[multinet.include.sys]socket.h"
#include "multinet _root:[multinet.include.netinet]in.h"
#i ncl ude <stdio. h>

#include "mul tinet_root:[nultinet.include]netdb.h"

mai n()

{

short s, vs;

int n, on=1;

char buf[256];

struct sockaddr_in sin, sin2;
struct hostent *hp;

struct servent *sp;

/*

* Create an |P-famly socket on which to
* |listen for connections

*/

s = socket (AF_I NET, SOCK_STREAM 0);

if (s <0) {
socket _perror("tcpechoserver: socket");
exi t (0x10000000) ;

/*

B-1

Example TCP Server Programs

Get the TCP port nunber of the "echo" server.

This is commented out, but left as an
exanple. W hardwire port 500 so we
don’t have to stop the Milti Net echo
server before running this.

* 0% X X X X X

/

#i f def not def
sp = getservbynane("echo", "tcp");
if (sp == NULL) {
fprintf(stderr,
"t cpechoserver: echo/tcp: unknown service\n");
exit (0x10000000);

}
#endi f not def

/
Set the "REUSEADDR' option on this socket.
This will allowus to bind() to it EVENif
there already connections in progress on
this port nunber. O herwi se, we would get an
"Address already in use" error.

/

* 0% X X X X X

f (setsockopt (s, SOL_SOCKET, SO REUSEADDR,
&on, sizeof(on)) < 0) {
socket _perror("tcpechoserver: setsockopt");
exi t (0x10000000) ;

}
/*
* Create a "sockaddr_in" structure which describes
* the port we want to listen to. Address | NADDR_ANY
* means we will accept connections to any of our
* |ocal |IP addresses.
*

/

sin.sin_famly = AF_I NET;
sin.sin_addr.s_addr = | NADDR_ANY;
#i fdef not def
sin.sin_port = sp->s_port;
#el se
sin.sin_port = htons(500);
#endi f not def

/*

* Bind to that address...
*

/

if (bind(s, &sin, sizeof (sin)) < 0) {

B-2

Example TCP Server Programs

E I

/*

*/
for

socket _perror("tcpechoserver: bind");
exi t (0x10000000) ;

Declare to the kernel that we want to listen for
connections on this port, and that the kernel may
queue up to five such connections for us.

(listen(s, 5 < 0) {
socket _perror("tcpechoserver: listen");
exi t (0x10000000) ;

Now go into a loop, waiting for a connection and
processing it.

(i) o
/*
* Call accept to accept a new connection. This
* ’'peels’ a connection off of the original socket
* and returns to us a new channel to the connection.
* We could now cl ose down the original socket if we
* didn’t want to handl e nore connecti ons.
*/
n = sizeof (sin2); /* Pass in the length */
vs = accept(s, &sin2, &n);
if (vs <0) {
socket _perror("tcpechoserver: accept");
exi t (0x10000000) ;
}
/*
* ‘sin2’ will be a sockaddr_in structure describing
* the remote | P address (and port #) which the
* connection was made from Before we start to echo
* data, wite a string into the network descri bi ng
* this port.
*

/

hp = get host byaddr (&si n2. si n_addr,
si zeof (sin2.sin_addr), AF_INET);
if (hp) {
/*
* W found a correspondi ng hostnane,
* format the string one way...
*/
sprintf(buf, "Connection received from% [%]\r\n",

B-3

Example TCP Server Programs

hp- >h_name, inet_ntoa(sin2.sin_addr));
} else {
/*
* This host not in the host tables or Donain
* Name Server.
*/
sprintf(buf, "Connection received from[%]\r\n",
i net _ntoa(sin2.sin_addr));
}
socket _write(vs, buf, strlen(buf));
/*
* Now go into a | oop, reading data fromthe network
* and sending it right back...
*/

while ((n = socket_read(vs, buf, sizeof(buf))) > 0) {
socket _write(vs, buf, n);
}

/*
* socket _read() will return O on end-of-file, or -1
* on error...

*/
if (n<0) {
socket _perror("tcpechoserver: read");
}
/*

* Now cl ose down the connection we accepted before

* going back to get another...
*/

socket _cl ose(vs);

TCP Server as Part of the MULTINET_SERVER

The following is another example of a TCP server program that uses the MULTINET _SERVER to
listen for connections on the TCP ECHO port, read data from the connection and sends it back out.

To configure the MULTINET_SERVER process to automatically create a process running this
image when a connection arrives:

$ MULTI NET CONFlI GURE/ SERVER

Mul ti Net Server Configuration Uility 4.4(nnn)

[Reading in synbols from SERVER i nage MJLTI NET: SERVER. EXE]
[Reading in configuration from MJULTI NET: SERVI CES. MASTER_SERVER]
SERVER- CONFI GGADD TEST

[Addi ng new configuration entry for service "TEST"]

B-4

Example TCP Server Programs

Protocol: [TCP] TCP

TCP Port number: 500

Programto run: USERS: [ADELMAN] TCPECHOSERVER. EXE
[Added service TEST to configuration]

[Sel ected service is now TEST]

SERVER- CONFI G>RESTART

If you have installed the MultiNet Programmers’ Kit, you will find the following program on-line
as MULTINET_ROOT:[MULTINET.EXAMPLES]TCPECHOSERVER.C.

#include "mul tinet _root:[nmultinet.include.sys]types.h"
#include "mul tinet _root:[multinet.include.sys]socket.h"
#include "multinet _root:[multinet.include.netinet]in.h"
#i ncl ude <stdio. h>

#include "mul tinet_root:[nultinet.include]netdb.h"

mai n()
{
short s;
int n, Status;
char buf[256];
struct sockaddr _in sin;
struct hostent *hp;
static struct {int Size; char *Ptr;} Descr={9 ,"SYS$I NPUT"};

/*

* $ASSICGN a channel to SYS$INPUT. This channel is the

* channel to the network connection. This call nust

* be perforned prior to any calls to VAX C I/O routines.
*/

St atus = SYS$ASSI GN(&Descr, &s, 0, 0);
if (!(Status&l)) {
exit(Status);

}
/*
* Use getpeernane() to find out who nade the
* connection to us, so we can act exactly like the
* exanpl e tcpechoserver- st andal one.
*/
n = sizeof (sin); /* Pass in the length */

if (getpeernane(s, &sin, &) < 0) {
socket _perror("tcpechoserver: getpeernane");
exi t (0x10000000) ;

‘“sin will be a sockaddr_in structure describing the
renote | P address (and port #) which the connection
was made from Before we start to echo data, wite a

* % X F

B-5

Example TCP Server Programs

* string into the network describing this port.
*/

hp = get host byaddr (&si n. si n_addr,
si zeof (sin.sin_addr), AF_INET);
it (hp) {
/*
* We found a correspondi ng hostnane, format the string
* one way...
*/
sprintf(buf, "Connection received from% [%]\r\n",
hp->h_name, inet_ntoa(sin.sin_addr));
} else {
/*
* This host not in the host tables or
* Domai n Name Server.
*/
sprintf(buf, "Connection received from[%]\r\n",
i net _ntoa(sin.sin_addr));
}

socket _write(s, buf, strlen(buf));

/*
* Now go into a | oop, reading data fromthe network
* and sending it right back...
*/
while ((n = socket_read(s, buf, sizeof(buf))) > 0) {
socket _write(s, buf, n);

}
/*
* socket _read() will return O on end-of-file, or -1
* on error...
*/
if (n<0) {
socket _perror("tcpechoserver: read");
}
/*
* Now cl ose down the connection..
*/

socket _cl ose(s);

/*

* Exit successfully.
*/

exit(1l);

B-6

Appendix C

Note!

Example UDP Client Program

The following is an example of a UDP client that sends a packet to the UDP ECHO port on the
local machine and prints what comes back.

It uses SYS$QIO to read the packet so that it can timeout and retransmit the packet.

If you have installed the MultiNet Programmers’ Kit, you will find the following program on-line
as MULTINET_ROOT:[MULTINET.EXAMPLES]JUDPECHOCLIENT.C.

#i
#i
#i
#i
#i
#i
#i

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

mai n()

{

i nt

"mul tinet _root
"mul tinet _root
"mul tinet _root
<stdi 0. h>

"mul tinet_root
"mul tinet_root
"mul tinet _root

S, n;

char buf[256];
struct sockaddr_in sin;

struct hostent
struct servent

/*

*

*/

[l ti
[l ti
[l ti

[mul ti
[mul ti
[l ti

*hp;
*Sp;

net .
net .
net .

net.
net.
net .

ncl ude. sys]types. h"
ncl ude. sys] socket . h"
ncl ude. netinet]in.h"

ncl ude] net db. h"
ncl ude] errno. h"
ncl ude. virs] i neti odef. h"

Get the | P address of the host naned "LOCALHOST"
* This is the | oopback address for ourselves

hp = get host byname("| ocal host");
if (hp == NULL) {

fprintf(stderr,

exi t (0x10000000) ;

"udpechoclient: |ocal host unknown\n");

C-1

Example UDP Client Program

/*
* Create an |IP-famly socket on which to

* make the connection
*/

s = socket (hp->h_addrtype, SOCK_DGRAM 0);

if (s <0) {
socket _perror("udpechoclient: socket");
exi t (0x10000000) ;

Get the UDP port number of the "echo" server.

This is commented out, but left as an exanple. W
hardwi re port 500 to talk to the UDPECHOSERVER
progr ans.

/

* 0% X X X X X

#i f def not def
sp = getservbynane("echo", "udp");
if (sp == NULL) {
fprintf(stderr,
"udpechocl i ent: echo/udp: unknown service\n");
exit (0x10000000);
}
#endi f not def
/*

* Create a "sockaddr_in" structure which
describes the renpte | P address we want
to send to (from gethostbyname()) and
the renote UDP port nunber (from
get servbynane()).

/
sin.sin_famly = hp->h_addrtype;
bcopy(hp->h_addr, &sin.sin_addr, hp->h_|ength);
#i f def not def
sin.sin_port = sp->s_port;
#el se
sin.sin_port = htons(500);
#endi f not def

E T L B I

/
Do a pseudo-connect to that address. This tells
the kernel that anything witten on this socket

gets sent to this destination. It also binds us
to a local port number (random but that is ok).

* ok K % % ok

C-2

Example UDP Client Program

n = connect (s, &sin, sizeof(sin));
if (n<0) {

socket _perror("udpechoclient: connect");
exi t (0x10000004);

}

/*
* Now go into a | oop, reading data fromthe network,
* witing it to the term nal and reading data from
* the terminal, witing it to the network...
*/
whil e (fgets(buf, sizeof(buf), stdin)) {
again: socket_wite(s, buf, strlen(buf));
n = socket _read_w th_timeout(s, buf, sizeof(buf), 10);
if (n<0) {
/*
* |f the read tinmes out, assunme that the
* packet is lost and retransnmit it. UDPis
* not a reliable transport.
*/
if (socket_errno == ETI MEDOUT) goto agai n;
socket _perror("udpechoclient: socket_read");
exi t (0x10000000) ;
} else {
wite(1, buf, n);

}

}

exit(1);
}
/*
* This routine does a normal read using $Q O and
* also sets atiner. |If no data arrives within the
* specified tine, the read is aborted.
*/

int socket_read_with_timeout(fd, buf, len, timeout)
int fd, len, tineout;
char *buf;
{
unsi gned short | OSB[4];
int Status, TIME2]={-10000000 * timeout, -1};

/*
* Start the read on the socket.
*/
Status = SYS$Q (1,
fd,
| C&_RECEI VE,
| CSB,

C-3

Example UDP Client Program

0, O,
buf ,
| en,
0, 0, 0, 0);

if (!(Status&l)) {
vheerrno = Status;
if (vmserrno & 0x8000) {

vnserrno | = 0x4;
socket _errno = (Status & Ox7fff) >> 3;
} else {
socket _errno = EIQ
}
return(-1);
}
/*
* Start the tiner
*/

Status = SYS$SETIMR(2, TIME, 0, 0, 0);
if (!(Status&l)) {
vhserrno = Status;
if (vmserrno & 0x8000) {
vhserrno | = 0x4;
socket _errno = (Status & Ox7fff) >> 3;
} else {
socket _errno = EI G
}
return(-1);

}

SYSSWFLOR(1, (1<<1)](1<<2));

/*
* Check if timer went off, or packet was received
*/
if (I10SB[0] == 0) {
/*
* Timer went off. Cancel the I/0O
*/
SYS$CANCEL(f d);

socket _errno = ETI MEDOUT;

vhserrno = 0x8004 | (ETI MEDOUT << 3);

return(-1);

} else {

/*
* 1/0O conpleted, cancel the tiner.
*/
SYS$CANTI M 0, 0) ;

c4

Example UDP Client Program

* Check for errors
*/
if ('(10sB[0] & 1)) {
vnserrno = | OSB[0] ;
if (vmserrno & 0x8000) {

vhserrno | = 0x4;
socket _errno = (1 OSB[0] & Ox7fff) >> 3;
} else {
socket _errno = EIQ
}
return(-1);
}
}
/*
* And the character count
*/

return(lCSB[1]);

C-5

Appendix D

Example UDP Server Programs

Standalone UDP Server

The following program is an example of a UDP server that listens for packets on the UDP ECHO
port and sends them back to the port that transmitted them.

If you have installed the MultiNet Programmers’ Kit, you will find the following program on-line
as MULTINET_ROOT:[MULTINET.EXAMPLES] UDPECHOSERVER-STANDALONE.C.

#include "mul tinet _root:[multinet.include.sys]types.h"
#include "mul tinet _root:[multinet.include.sys]socket.h"
#include "multinet _root:[multinet.include.netinet]in.h"
#i ncl ude <stdio. h>

#include "mul tinet_root:[nultinet.include]netdb.h"

mai n()
{
short s;
int n, |len;
char buf[256];
static int on=1;
struct sockaddr_in sin;

/*

Create an IP-fanmily socket on which to
* Jlisten for packets
*/

s = socket (AF_I NET, SOCK_DGRAM 0);
if (s <0) {
socket _perror("udpechoserver: socket");
exit (0x10000000);
}
/*
*

Get the UDP port nunber of the "echo" server.

D-1

Example UDP Server Programs

*

* This is comented out, but left as an
* exanple. W hardwire port 500 so we
* don't have to stop the Miulti Net echo
* server before running this.

*/

#i f def not def
sp = getservbynane("echo", "udp");
if (sp == NULL) {
fprintf(stderr,
"udpechoserver: echo/tcp: unknown service\n");
exit (0x10000000);

#endi f not def

/
Set the "REUSEADDR' option on this socket. This
will allowus to bind() toit EVENif there
al ready connections in progress on this port
nunber. Oherwi se, we would get an "Address
already in use" error.

*/

E R S B I

if (setsockopt(s, SOL_SOCKET, SO REUSEADDR,
&on, sizeof(on)) < 0) {
socket _perror("udpechoserver: setsockopt");
exi t (0x10000000) ;

}

/*

* Create a "sockaddr _in" structure which describes

* the port we want to listen to. Address | NADDR_ANY
* means we will accept connections to any of our

* |ocal |P addresses.

*/

sin.sin_famly = AF_I NET;
sin.sin_addr.s_addr = | NADDR _ANY;
#i f def not def
sin.sin_port = sp->s_port;
#el se
sin.sin_port = htons(500);
#endi f not def

/*
* Bind to that address...
*/

if (bind(s, &sin, sizeof (sin)) < 0)
socket _perror ("udpechoserver: bind");

D-2

Example UDP Server Programs

exit (0x10000000);

* Now go into a |loop, reading data fromthe network
* and sending it right back...
*/

while ((n = recvfron(s, buf, sizeof(buf),
0, &sin, &en)) >0 {
sendto(s, buf, n, 0, &sin, len);

}
if (n<0) {
socket _perror("udpechoserver: recvfront);
exi t (0x10000004) ;
}
/*
* Now cl ose down the connection...
*/

socket _cl ose(s);

/*
* Exit successfully.
*/

exit(1);

UDP Server as Part of the MULTINET_SERVER

Thefollowing is an example of aUDP server that letsthe MULTINET _SERVER process listen for
it. When a packet arrives for the UDP ECHO port the MULTINET_SERVER will create a process
running this image with SY SSINPUT being a socket on which a pseudo-connect() has been done.

To configure the MULTINET_SERVER process to automatically create a process running this
image when a packet arrives:

$ MULTI NET CONFlI GURE/ SERVER

Mul ti Net Server Configuration Uility 4.4(nnn)

[Reading in synbols from SERVER i nage MJLTI NET: SERVER. EXE]

[Reading in configuration from MJLTI NET: SERVI CES. MASTER_SERVER] SERVER-
CONFI GGADD TEST

[Addi ng new configuration entry for service "TEST"]

Protocol: [TCP] UDP

TCP Port number: 500

Programto run: USERS: [ADELMAN] UDPECHOSERVER. EXE

[Added service TEST to configuration]

D-3

Example UDP Server Programs

[Sel ected service is now TEST]
SERVER- CONFI G>RESTART

If you have installed the MultiNet Programmers’ Kit, you will find the following program on-line
as MULTINET_ROOT:[MULTINET.EXAMPLES] UDPECHOSERVER.C.

#include "mul tinet _root:[nmultinet.include.sys]types.h"
#include "multinet_root:[multinet.include.sys]socket.h"

#i ncl ude <stdio. h>

#include "mul tinet_root:[nultinet.include]errno.h"
#include "mul tinet _root:[multinet.include.vns]inetiodef.h"

mai n()
{
short s;
int n, Status;
char buf[256];
static struct {int Size; char *Ptr;} Descr={9 ,"SYS$I NPUT"};

/
$ASSI GN a channel to SYS$INPUT. This
channel is the channel to the network
connection. This call nust
be perforned prior to any calls to
VAX C | /O routines.

/

* 0% F X X X *

Status = SYS$ASSI GN(&Descr, &s, 0, 0);
if ('(Status&l)) {

exit(Status);
}

/
Now go into a | oop, reading data from
the network and sending it right back...

If we don't receive any packets in 30
seconds, assune that we are no | onger
needed and exit. |f we were needed,
when a new packet arrives the
MULTI NET_SERVER wi || just create a new
process to handle it.

/

E I I S S T . . N

while ((n = socket_read_wth_timeout(s, buf,
si zeof (buf), 30)) > 0) {
socket _wite(s, buf, n);

}

/*
* Now cl ose down the connection...

D-4

Example UDP Server Programs

*/

socket _cl ose(s);

/*
* Exit successfully.
*/
exit(1);
}
/*
* This routine does a normal read using $Q O and
* also sets atinmer. If no data arrives within the
* specified tine, the read is aborted.
*/

int socket_read with_tinmeout(fd, buf, len, tinmeout)
int fd, len, tineout;
char *buf;

{

unsi gned short | QOSB[4];
int Status, TIME2]={-10000000 * tinmeout, -1};

/*

* Start the read on the socket.
*

Status = SYS$Q O 1,

fd,

| G5_RECEI VE,
| OSB,

0, O,

buf,

| en,

0, 0, 0, 0);

if (!(Status&l)) {
vimserrno = Stat us;
if (vmserrno & 0x8000) {

vnserrno | = 0x4;
socket _errno = (Status & Ox7fff) >> 3;
} else {
socket _errno = EIQ
}
return(-1);
}
/*

* Start the tiner

D-5

Example UDP Server Programs

*/

Status = SYS$SETIMR(2, TIME, 0, 0, 0);
if (!'(Status&l)) {

viserrno = Status;

if (vmserrno & 0x8000) {

viserrno | = 0x4;

socket _errno = (Status & Ox7fff) >> 3;
} else {

socket _errno = EIQ
}
return(-1);

}
SYSSWFLOR(1, (1<<1)|(1<<2));

/*
* Check if timer went off, or packet was received
*/

if (10SB[0] == 0) {
/*
* Timer went off. Cancel the I/0O
*
/
SYS$CANCEL(f d) ;
socket _errno = ETI MEDOUT;
viserrno = 0x8004 | (ETI MEDOUT << 3);
return(-1);
} else {
/*
* |1/O conpl eted, cancel the tiner.
*
/
SYS$CANTI M 0, 0) ;
/*
* Check for errors
*/
if (1 (10sB[0] & 1)) {
vnserrno = | GSB[0] ;
if (vhmeerrno & 0x8000) {
vnserrno | = 0x4;
socket _errno = (1 OSB[0] & Ox7fff) >> 3;
} else {
socket _errno = EIG

}

return(-1);

~

* X F

And the character count

D-6

Example UDP Server Programs

return(l CSB[1]);

Run-Once UDP Server as Part of the MULTINET_SERVER

The following program is an example of aternative UDP ECHO server that letsthe
MULTINET_SERVER process listen for it. When a packet arrives for the UDP ECHO port, the
MULTINET_SERVER will create a process running thisimage, with SY SSINPUT being the
socket on which the original packet arrives. This process can handle as many packets as it would
like; when it exitsthe MULTINET _SERVER will go back to listening for new packets.

To configure the MULTINET_SERVER process to automatically create a process running this
image when a connection arrives:

$ MULTI NET CONFlI GURE/ SERVER

Mul ti Net Server Configuration Uility 4.4(nnn)

[Reading in synbols from SERVER i nage MJLTI NET: SERVER. EXE]
[Reading in configuration from MJULTI NET: SERVI CES. MASTER_SERVER]
SERVER- CONFI GADD TEST

[Addi ng new configuration entry for service "TEST"]
Protocol: [TCP] UDP

TCP Port nunber: 500

Programto run: USERS: [ADELMAN] UDPECHOSERVER. EXE

[Added service TEST to configuration]

[Sel ected service is now TEST]

SERVER- CONFI G>SET CONNECTED UDP_CONNECTED_SI NGLE

[Connected action of TEST set to UDP_Connected_Si ngl e]
SERVER- CONFI G-RESTART

If you have installed the MultiNet Programmers’ Kit, you will find the following program on-line
as MULTINET_ROOT:[MULTINET.EXAMPLES]JUDPECHOSERV ER-ONE.C.

#include "mul tinet _root:[multinet.include.sys]types.h"
#include "multinet_root:[multinet.include.sys]socket.h"

#i ncl ude <stdio. h>

#include "mul tinet_root:[nultinet.include]errno.h"
#include "mul tinet _root:[multinet.include.vns]inetiodef.h"

mai n()
{
short s;
int n, Status, len;
char buf[256];
static struct {int Size; char *Ptr;} Descr={9 ,"SYSSI NPUT"};
struct sockaddr sa;

/
$ASSI GN a channel to SYS$INPUT. This
channel is the channel to the network
connection.

* Ok X X X

D-7

Example UDP Server Programs

D-8

Status = SYS$ASSI GN(&Descr, &s, 0, 0);
if ('(Status&l)) {
exit(Status);

}

/*
* Now go into a | oop, reading data from the network
* and sending it right back...
*
* |f we don't receive any packets in 30
* seconds, assune that we are no | onger
* needed and exit. |f we were needed,
* when a new packet arrives the
* MJLTINET_SERVER wi || just create a new
* process to handle it.
*

/

while ((n = recvfromw th_timeout(s, buf,
si zeof (buf), 0, &sa, & en, 60)) > 0) {
sendto(s, buf, n, 0, &sa, len);
}
/*
* Now cl ose down the connection...
*/

socket _cl ose(s);

/*
* Exit successfully.
*/
exit(1);
}
/*

* This routine does a nornmal read using $Q O and

* also sets atiner. |If no data arrives within the

* specified tine, the read is aborted.
*/

int recvfromwi th_timeout(fd, buf, len, flags,
from fromen, timeout)
int fd, len, timeout, flags, *from en;
struct sockaddr *from
char *buf;
{
unsi gned short | OSB[4];
int Status, TIME2]={-10000000 * timeout, -1};
struct {short int Length;

Example UDP Server Programs

char Sockaddr[sizeof (struct sockaddr)];}
Local Buffer;

/*
* Start the read on the socket.
*/
Status = SYS$Q 1,
fd,
| C_RECEI VE,
| GSB,
0, O,
buf ,
| en,
fl ags,

fromen ? &.ocal _Buffer : O,
from en ? sizeof(Local _Buffer) : 0, 0);

if (!(Status&l)) {
vnserrno = Status;
if (vmserrno & 0x8000) {
vnserrno | = 0x4;
socket _errno = (Status & Ox7fff) >> 3;
} else {
socket _errno = EIQ
}
return(-1);

}

/*
* Start the tinmer
*/

Status = SYS$SETI MR(2, TIME, 0, 0, 0);
if (!(Statusé&l)) {
vhserrno = Status;
if (vmserrno & 0x8000) {
viserrno | = 0x4;
socket _errno = (Status & Ox7fff) >> 3;
} else {
socket _errno = EIQ
}

return(-1);

}
SYS$WFLOR(1, (1<<1)]|(1<<2));
/*

* Check if timer went off, or packet was received
*/

D-9

Example UDP Server Programs

if (10B[0] == 0) {

/*
* Tinmer went off. Cancel the I/O
*/
SYS$CANCEL(fd);
socket _errno = ETI MEDOUT;
vhserrno = 0x8004 | (ETI MEDOUT << 3);
return(-1);
} else {
/*
* |/O conpl eted, cancel the tiner.
*/
SYS$CANTI M 0, 0) ;
/*
* Check for errors
*/
if (1(10sB[0] & 1)) {
viserrno = | OSB[0] ;
if (vmserrno & 0x8000) {

vnserrno | = 0x4;
socket _errno = (1 OSB[0] & Ox7fff) >> 3;
} else {
socket _errno = EIG
}
return(-1);
}
}
/*
* Return the sockaddr to the user
*/

if (fromen) {
*from en = Local _Buffer.Length;
bcopy(Local _Buffer. Sockaddr,
from
si zeof (Local _Buf f er. Sockaddr));
}
/*
* And the character count
*
/
return(l1 OSB[1]);

D-10

Index

A

accept() 1-4
AF_CHAOS 1-1
AF_INET 1-1, 1-2, 1-6

Application Programming Interface (API) routines 4-1

AST reentrancy 2-1
auth_destroy, RPC RTL 9-3
authnone_create, RPC RTL 9-4
authunix_create, RPC RTL 9-5

authunix_create_default, RPC RTL 9-6

B

bind() 1-4, 1-5
BSD 1-5

C

callrpc, RPC RTL 9-6
cInt_broadcast, RPC RTL 9-8
cInt_call, RPC RTL 9-10
cInt_control, RPC RTL 9-11
cInt_create, RPC RTL 9-13
cInt_destroy, RPC RTL 9-15
cInt_geterr, RPC RTL 9-16
cInt_pcreateerror, RPC RTL 9-17
cInt_perrno, RPC RTL 9-18
cInt_perror, RPC RTL 9-19
cInt_spcreateerror, RPC RTL 9-17
cInt_sperrno, RPC RTL 9-18
cInt_sperror, RPC RTL 9-19
cIntraw_create, RPC RTL 9-20
cinttcp_create, RPC RTL 9-22
cIntudp_bufcreate, RPC RTL 9-24
cIntudp_create, RPC RTL 9-24
connect() 1-3, 1-5, 3-1

D

Distributed Application Components 6-1

DNS
resolver routines 2-10
documentation
comments xxi
online help xviii
structure xv

E

errno 3-1

F

FAQs xviii

files
PROGRAM.H 7-4
PROGRAM_CLNT.C 7-4
PROGRAM_SVC.C 7-4
PROGRAM_XDR.C 7-4

G

get_myaddress routine, RPC RTL 8-3

gethostbyaddr() 1-2

gethostbyname() 1-2, 1-3, 2-1
getrpcbynumber, RPC RTL 8-4

getrpcport, RPC RTL 8-5

getservbyname() 1-2, 1-3, 1-4

getservbyport() 1-2

Index-1

Index

registration 5-2
requesting a listing 6-4

H

h_errno 2-10

help

by electronic mail xvii Q
by fax xvii QIO interface call

htonl() 1-2 IO$_ACCEPT 3-2

htons() 1-2 I0$_ACCEPT_WAIT 3-4
I0$_BIND 3-5
I0$_CONNECT 3-6
I0$_GETPEERNAME 3-7

| I0$_GETSOCKNAME 3-8

INADDR_ANY 1-4, 1-5 I0$_GETSOCKOPT 3-9

inet_addr() 1-2 I0$_IOCTL 3-11

inet_ntoa() 1-2 |O$_L|STEN 3-12

Input/Output Status Block (I0SB) 3-1 IO$_READVBLK 3-13

I0$M_EXTEND 1-6 I0$_RECEIVE 3-13
I0$_SELECT 3-15
I0$_SEND 3-17
I0$_SENSEMODE 3-19

L I0$_SENSEMODE | I0$M_CTRL 3-23

] I0$_SETMODE|IO$M_ATTNAST 3-33

listen() 1-4 |0$_SETSOCKOPT 3-34

logical I0$_SHUTDOWN 3-36

MULTINET_HOST_NAME 2-20
MULTINET_HOSTALIASES 2-34
MULTINET_NETWORK_IMAGE 2-47
MULTINET_SNMP_DEBUG 4-3

|0$_SOCKET 3-37
SYS$CANCEL 3-39
SYS$DASSGN 3-40

R
recv() 1-4, 1-5
recvfrom() 1-4, 1-5
registerrpc, RPC RTL 11-3
Remote Procedure Call (RPC) 5-2
RPC

protocol compiler, RPCGEN 7-1
RPC Run-Time Library (RTL) 9-1

M

MultiNet
public mailing list xviii
software patches xix

O conventions 8-1
online help xviii RPC Services

broadcast RPC 5-8

client 5-3

client stub 5-4
P components 5-2

Port Mapper 5-2
pmap_getmaps, RPC RTL 10-2 RPCGEN compiler 5-2
pmap_getport, RPC RTL 10-3 Run-Time Libraries (RTLs) 5-2
PMAP_PROT.H file 8-2 definition 5-1
pmap_rmtcall, RPC RTL 10-4 distributed applications 5-1
pmap_set, RPC RTL 10-5 compile all files 6-3
pmap_unset, RPC RTL 10-6 design 6-2
Port Mapper execute client and server programs 6-4
binding 5-2 link object code 6-3

broadcast RPC 5-3 start port mapper 6-3

Index-2

Index

write and compile definition 6-2
write code 6-3
error handling 5-4
External Data Representation (XDR) 5-3
global variables
svc_fdset 11-7
implementation 5-1
local calls vs. remote calls 5-4
management routines 8-1
marshalling 5-4
Port Mapper 5-2
binding 5-2
registration 5-2
port mapper routines 10-1
processing flow 5-3
program listing, requesting 6-4
program version numbers 5-9
remote procedure call (RPC) 5-2
remote procedure numbers 5-9
remote programs/procedures, identifying 5-8
RFCs 5-1
routines
high-level 5-5
low-level 5-6
mid-level 5-5
RPC information 5-3, 6-4
RPC language 7-2
RPCGEN compiler 5-2
error handling 7-6
input files 7-2
interface definitions 7-2
invoking 7-4
output files 7-3
preprocessor directives 7-3
restrictions 7-6
software requirements 7-1
RPCINFO utility
sample 6-4
RTL client routines
auth_destroy 9-3
authnone_create 9-4
authunix_create 9-5
authunix_create_default 9-6
callrpc 9-6, 9-7
cInt_broadcast 9-8
cInt_call 9-10
clnt_control 9-11
cInt_create 9-13
cInt_destroy 9-15
cInt_geterr 9-16
cInt_pcreateerror 9-17
cInt_perrno 9-18
cInt_perror 9-19
cInt_spcreateerror 9-17
cInt_sperrno 9-18
cInt_sperror 9-19

clntraw_create 9-20
clnttcp_create 9-22
cIntudp_bufcreate 9-24
cintudp_create 9-24
common arguments 9-1
reference 9-2

RTL management routines
get_myaddress 8-3
getrpcbynumber 8-4
getrpcport 8-5
header files 8-1
reference 8-2
routine name conventions 8-1

RTL Port Mapper routines
arguments 10-1
pmap_getmaps 10-2
pmap_getport 10-3
pmap_rmtcall 10-4
pmap_set 10-5
pmap_unset 10-6

RTL Server routines
svcerr_systemerr 11-13

RTL server routines
registerrpc 11-3
svc_destroy 11-4
svc_freeargs 11-5
svc_getargs 11-6
svc_getregset 11-7
svc_register 11-9
svc_run 11-10
svc_sendreply 11-11
svc_unregister 11-12
svcerr_auth 11-13
svcerr_decode 11-13
svcerr_noproc 11-13
svcerr_noprog 11-13
svcerr_progvers 11-13
svcerr_weakauth 11-13
svcfd_create 11-15
svcraw_create 11-16
svctcp_create 11-17
svcudp_create 11-18
svcudp_enablecache 11-19
xprt_register 11-20
xprt_unregister 11-21

RTL XDR routines
reference 12-2
xdr_accepted_reply 12-5
xdr_array 12-6
xdr_authunix_parms 12-7
xdr_bool 12-8
xdr_bytes 12-9
xdr_callhdr 12-10
xdr_callmsg 12-11
xdr_char 12-12
xdr_double 12-13

Index-3

xdr_enum 12-14
xdr_float 12-15
xdr_free 12-16
xdr_hyper 12-17
xdr_int 12-18
xdr_long 12-19
xdr_netobj 12-20
xdr_opaque 12-21
xdr_opaque_auth 12-22
xdr_pmap 12-23
xdr_pmaplist 12-24
xdr_pointer 12-25
xdr_reference 12-27
xdr_rejected_reply 12-28
xdr_replymsg 12-29
xdr_short 12-30
xdr_string 12-31
xdr_u_char 12-32
xdr_u_hyper 12-33
xdr_u_int 12-34
xdr_u_long 12-35
xdr_u_short 12-36
xdr_union 12-37
xdr_vector 12-38
xdr_void 12-39
xdr_wrapstring 12-40
xdrmem_create 12-41
xdrrec_create 12-42
xdrrec_endofrecord 12-44
xdrrec_eof 12-45
xdrrec_skiprecord 12-46
xdrstdio_create 12-47

server 5-3

system crashes 5-4

transport protocols 5-6

unmarshalling 5-4

XDR language 7-2

XID cache 5-7

RPCGEN
file naming conventions 7-3
output files 7-3

S

sa_data 1-1
sa_family 1-1
select() 2-1
send() 1-4, 1-5
sendto() 1-4, 1-5
SIGURG 3-1
sin_addr 1-2, 1-5
sin_family 1-2, 1-6
sin_len 1-6
sin_port 1-2, 1-5

sin_zero 1-2

SNMP extendible agent API routines
debugging code 4-3
initializing SNMP subagent 4-4

installing the extension agent image 4-3
linking the extension agent image 4-2

prerequisites 4-2
programming 4-1
querying SNMP subagent 4-8
reference 4-3
registering multiple subtrees 4-6
sending trap from subagent 4-10
SnmpExtensionInitEx 4-6
SnmpExtensionQuery 4-8
SnmpExtensionTrap 4-10
SOCK_STREAM 1-2
sockaddr 1-1, 1-2, 1-5
sockaddr_in 1-1, 1-2, 1-3, 1-4, 1-5
socket definition 1-1
socket library function
accept() 2-3
bcmp() 2-5
bcopy() 2-6
bind() 2-7
bzero() 2-8
connect() 2-9
endhostent() 2-11
endnetent() 2-12
endprotoent() 2-13
endservent() 2-14
getdtablesize() 2-15
gethostbyaddr() 2-16
gethostbyname() 2-18
gethostbysockaddr() 2-19
gethostname() 2-20
getnetbyaddr() 2-21
getnetbyname() 2-22
getpeername() 2-23
getprotobyname() 2-24
getprotobynumber() 2-25
getprotoent() 2-26
getservbyname() 2-27
getservbyport() 2-28
getservent() 2-29
getsockname() 2-30
getsockopt() 2-31
gettimeofday() 2-33
hostalias() 2-34
htonl() 2-35
htons() 2-36
inet_addr() 2-37
inet_Inaof() 2-38
inet_makeaddr() 2-39
inet_netof() 2-40
inet_network() 2-41
inet_ntoa() 2-42

Index

kiread() 2-43

kiseek() 2-44

kiwrite() 2-45

listen() 2-46

multinet_kernel_nliith 2-47

nlist() 2-48

ntohl() 2-49

ntohs() 2-50

recv() 2-51

recvfrom() 2-53

recvmsg() 2-55

select() 2-57

select_wake() 2-60

send() 2-61

sendmsg() 2-62

sendto() 2-64

sethostent() 2-66

setnetent() 2-67

setprotoent() 2-68

setservent() 2-69

setsockopt() 2-70

shutdown() 2-72

socket ioctl
FIONBIO 2-77
FIONREAD 2-78
SIOCADDRT 2-79
SIOCATMARK 2-83
SIOCDARP 2-84
SIOCDELRT 2-81
SIOCGARP 2-85

SIOCGIFADDR 2-87
SIOCGIFBRDADDR 2-89
SIOCGIFCONF 2-91
SIOCGIFDSTADDR 2-92
SIOCGIFFLAGS 2-94
SIOCGIFMETRIC 2-96
SIOCGIFNETMASK 2-98
SIOCSARP 2-86
SIOCSIFADDR 2-88
SIOCSIFBRDADDR 2-90
SIOCSIFDSTADDR 2-93
SIOCSIFFLAGS 2-95
SIOCSIFMETRIC 2-97
SIOCSIFNETMASK 2-99

socket option

SO_BROADCAST 2-100
SO_DEBUG 2-101
SO_DONTROUTE 2-102
SO_ERROR 2-103
SO_KEEPALIVE 2-104
SO_LINGER 2-105
SO_OOBINLINE 2-106
SO_RCVBUF 2-107
SO_RCVLOWAT 2-108
SO_RCVTIMEO 2-109
SO_REUSEADDR 2-110

SO_SNDBUF 2-111
SO_SNDLOWAT 2-112
SO_SNDTIMEO 2-113
SO_TYPE 2-114
TCP_KEEPALIVE 2-115
TCP_NODELAY 2-116
socket() 2-73
socket_close() 2-75
socket_ioctl() 2-76
socket_perror() 2-117
socket_read() 2-118
socket_write() 2-119
vms_errno_string() 2-120
socket() 1-2, 3-1
socket_read() 1-3, 1-4
socket_write() 1-3, 1-4
svc_destroy, RPC RTL 11-4
svc_freeargs, RPC RTL 11-5
svc_getargs, RPC RTL 11-6
svc_getregset, RPC RTL 11-7
svc_register, RPC RTL 11-9
svc_run, RPC RTL 11-10
svc_sendreply, RPC RTL 11-11
svc_unregister, RPC RTL 11-12
svcerr_auth, RPC RTL 11-13
svcerr_decode, RPC RTL 11-13
svcerr_noproc, RPC RTL 11-13
svcerr_noprog, RPC RTL 11-13
svcerr_progvers, RPC RTL 11-13
svcerr_systemerr, RPC RTL 11-13
svcerr_weakauth, RPC RTL 11-13
svcfd_create, RPC RTL 11-15
svcraw_create, RPC RTL 11-16
svctcp_create, RPC RTL 11-17
svcudp_bufcreate, RPC RTL 11-18
svcudp_create, RPC RTL 11-18
svcudp_enablecache, RPC RTL 11-19

T

TCP
client 1-3
program A-1
server 1-4
programs B-1
TCP SNMP counters function
reading the 3-31
typographical conventions xx

U

UDP 1-4
client program C-1

Index-5

Index

server programs D-1
UDP SNMP counters function
reading the 3-31

X

XDR encoding and decoding routines 12-2
XDR routines, upper layer 12-4
XDR support routines 12-3
xdr_accepted_reply, RPC RTL 12-5
xdr_array, RPC RTL 12-6
xdr_authunix_parms, RPC RTL 12-7
xdr_bool, RPC RTL 12-8
xdr_bytes, RPC RTL 12-9
xdr_callhdr, RPC RTL 12-10
xdr_callmsg, RPC RTL 12-11
xdr_char, RPC RTL 12-12
xdr_double, RPC RTL 12-13
xdr_enum, RPC RTL 12-14
xdr_float, RPC RTL 12-15
xdr_free, RPC RTL 12-16
xdr_hyper, RPC RTL 12-17

xdr_int, RPC RTL 12-18

xdr_long, RPC RTL 12-19
xdr_netobj, RPC RTL 12-20
xdr_opaque, RPC RTL 12-21
xdr_opaque_auth, RPC RTL 12-22
xdr_pmap, RPC RTL 12-23
xdr_pmaplist, RPC RTL 12-24
xdr_pointer, RPC RTL 12-25
xdr_reference, RPC RTL 12-27
xdr_rejected_reply, RPC RTL 12-28
xdr_replymsg, RPC RTL 12-29
xdr_short, RPC RTL 12-30
xdr_string, RPC RTL 12-31
xdr_u_char, RPC RTL 12-32
xdr_u_hyper, RPC RTL 12-33
xdr_u_int, RPC RTL 12-34
xdr_u_long, RPC RTL 12-35
xdr_u_short, RPC RTL 12-36
xdr_union, RPC RTL 12-37
xdr_void, RPC RTL 12-39
xdr_wrapstring, RPC RTL 12-40
xdrmem_create, RPC RTL 12-41
xdrrec_create, RPC RTL 12-42
xdrrec_endofrecord, RPC RTL 12-44
xdrrec_eof, RPC RTL 12-45
xdrrec_skiprecord, RPC RTL 12-46
xdrstdio_create, RPC RTL 12-47
XID cache, enabling 5-8
xprt_register, RPC RTL 11-20
xprt_unregister, RPC RTL 11-21

Index-6

Reader’'s Comments
MultiNet for OpenVMS Programmer’s Reference, v4.4 Part Number: N-5003-44-NN-A

Your comments and suggestions will help us to improve the quality of our future documentation. Please note that this
form is for comments on documentation only.

| rate this guide’s: Excellent Good Fair Poor
Accuracy [0} 0 [0} [0}
Completeness (enough information) 0 (0] 0 0
Clarity (easy to understand) 0 (0] 0 0
Organization (structure of subject matter) 0 (0] 0 0
Figures (useful) 0 (0] 0 0
Index (ability to find topic) 0 (0] 0 0
Ease of use 0 (0] 0 0
1. 1would like to see morel/less:

2. Does this guide provide the information you need to perform daily tasks?

3. What | like best about this guide:

4. What | like least about this guide:

5. Do you like this guide’s binding? If not, what would you prefer?

My additional comments or suggestions for improving this guide:

| found the following errors in this guide:

Page Description

Please indicate the type of user/reader that you most nearly represent:

System Manager (0] Educator/Trainer (0]
Experienced Programmer O Sales (0]
Novice Programmer (0] Scientist/Engineer (0]
Computer Operator 0 Software Support 0
Administrative Support (0] Other (please specify) (0]
Name: Dept.

Company: Date

Mailing Address:

After filling out this form, FAX or mail it to:
Process Software, 959 Concord Street, Framingham, MA 01701-4682
Attention: Marketing Manager FAX 508-879-0042 e-mail:techpubs@process.com

	Preface
	Purpose of this Guide
	Document Structure
	Obtaining Customer Support
	Before Contacting Customer Support
	Sending Electronic Mail
	Calling Customer Support
	Contacting Customer Support by Fax
	Obtaining Online Help
	MultiNet Frequently Asked Questions List
	Accessing the MultiNet Public Mailing List
	Process Software World Wide Web Server
	Obtaining Software Patches Over the Internet
	Typographical Conventions
	Further Reading
	Documentation Comments

	Chapter 1
	MultiNet Programming Tutorial
	Sockets
	TCP Client
	TCP Server
	UDP
	BSD-Specific Tips
	BSD Sockets Porting Note
	BSD 4.3 TCP/IP Future Compatibility Considerations

	Chapter 2
	Socket Library Functions
	AST Reentrancy

	accept()
	bcmp()
	bcopy()
	bind()
	bzero()
	connect()
	Domain Name Resolver Routines
	endhostent()
	endnetent()
	endprotoent()
	endservent()
	getdtablesize()
	gethostbyaddr()
	gethostbyname()
	gethostbysockaddr()
	gethostname()
	getnetbyaddr()
	getnetbyname()
	getpeername()
	getprotobyname()
	getprotobynumber()
	getprotoent()
	getservbyname()
	getservbyport()
	getservent()
	getsockname()
	getsockopt()
	gettimeofday()
	hostalias()
	htonl()
	htons()
	inet_addr()
	inet_lnaof()
	inet_makeaddr()
	inet_netof()
	inet_network()
	inet_ntoa()
	klread()
	klseek()
	klwrite()
	listen()
	multinet_kernel_nliith
	nlist()
	ntohl()
	ntohs()
	recv()
	recvfrom()
	recvmsg()
	select()
	select_wake()
	send()
	sendmsg()
	sendto()
	sethostent()
	setnetent()
	setprotoent()
	setservent()
	setsockopt()
	shutdown()
	socket()
	socket_close()
	socket_ioctl()
	socket ioctl FIONBIO
	socket ioctl FIONREAD
	socket ioctl SIOCADDRT
	socket ioctl SIOCDELRT
	socket ioctl SIOCATMARK
	socket ioctl SIOCDARP
	socket ioctl SIOCGARP
	socket ioctl SIOCSARP
	socket ioctl SIOCGIFADDR
	socket ioctl SIOCSIFADDR
	socket ioctl SIOCGIFBRDADDR
	socket ioctl SIOCSIFBRDADDR
	socket ioctl SIOCGIFCONF
	socket ioctl SIOCGIFDSTADDR
	socket ioctl SIOCSIFDSTADDR
	socket ioctl SIOCGIFFLAGS
	socket ioctl SIOCSIFFLAGS
	socket ioctl SIOCGIFMETRIC
	socket ioctl SIOCSIFMETRIC
	socket ioctl SIOCGIFNETMASK
	socket ioctl SIOCSIFNETMASK
	socket option SO_BROADCAST
	socket option SO_DEBUG
	socket option SO_DONTROUTE
	socket option SO_ERROR
	socket option SO_KEEPALIVE
	socket option SO_LINGER
	socket option SO_OOBINLINE
	socket option SO_RCVBUF
	socket option SO_RCVLOWAT
	socket option SO_RCVTIMEO
	socket option SO_REUSEADDR
	socket option SO_SNDBUF
	socket option SO_SNDLOWAT
	socket option SO_SNDTIMEO
	socket option SO_TYPE
	socket option TCP_KEEPALIVE
	socket option TCP_NODELAY
	socket_perror()
	socket_read()
	socket_write()
	vms_errno_string()
	Chapter 3
	$QIO Interface
	IO$_ACCEPT
	IO$_ACCEPT_WAIT
	IO$_BIND
	IO$_CONNECT
	IO$_GETPEERNAME
	IO$_GETSOCKNAME
	IO$_GETSOCKOPT
	IO$_IOCTL
	IO$_LISTEN
	IO$_RECEIVE (IO$_READVBLK)
	IO$_SELECT
	IO$_SEND
	IO$_SENSEMODE
	IO$_SENSEMODE | IO$M_CTRL
	IO$_SETCHAR
	IO$_SETMODE|IO$M_ATTNAST
	IO$_SETSOCKOPT
	IO$_SHUTDOWN
	IO$_SOCKET
	SYS$CANCEL
	SYS$DASSGN
	Chapter 4
	SNMP Extensible Agent API Routines
	Requirements
	Linking the Extension Agent Image
	Installing the Extension Agent Image
	Debugging Code
	Subroutine Reference

	SnmpExtensionInit
	SnmpExtensionInitEx
	SnmpExtensionQuery
	SnmpExtensionTrap
	Chapter 5
	RPC Fundamentals
	Introduction
	What Are RPC Services?
	MultiNet Implementation
	Distributed Applications

	Components of RPC Services
	Run-Time Libraries (RTLs)
	RPCGEN Compiler
	Port Mapper
	RPC Information

	Client-Server Relationship
	External Data Representation (XDR)
	RPC Processing Flow
	Local Calls Versus Remote Calls
	Handling System Crashes
	Handling Errors
	Call Semantics

	Programming Interface
	High-Level Routines
	Mid-Level Routines
	Low-Level Routines

	Transport Protocols
	XID Cache
	Cache Entries
	Cache Size
	Execution Guarantees
	Enabling XID Cache

	Broadcast RPC
	Identifying Remote Programs and Procedures
	Remote Program Numbers
	Remote Version Numbers
	Remote Procedure Numbers

	Additional Terms

	Chapter 6
	Building Distributed Applications with RPC
	Introduction
	Distributed Application Components
	What You Need to Do
	Step 1: Design the Application
	Step 2: Write and Compile the Interface Definition
	Step 3: Write the Necessary Code
	Step 4: Compile All Files
	Step 5: Link the Object Code
	Step 6: Start the Port Mapper
	Step 7: Execute the Client and Server Programs
	Obtaining RPC Information
	Requesting a Program Listing

	Chapter 7
	RPCGEN Compiler
	Introduction
	What Is RPCGEN?
	Software Requirements
	Input Files
	Output Files
	Preprocessor Directives
	Invoking RPCGEN
	Creating All Output Files at Once
	Creating Specific Output Files
	Examples:
	Creating Server Stubs for TCP or UDP Transports

	Error Handling
	Restrictions

	Chapter 8
	RPC RTL Management Routines
	Introduction
	Management Routines
	Routine Name Conventions
	Header Files
	Management Routines

	get_myaddress
	getrpcbynumber
	getrpcport
	Chapter 9
	RPC RTL Client Routines
	Introduction
	Common Arguments
	Client Routines

	auth_destroy
	authnone_create
	authunix_create
	authunix_create_default
	callrpc
	clnt_broadcast
	clnt_call
	clnt_control
	clnt_create
	clnt_destroy
	clnt_geterr
	clnt_pcreateerror / clnt_spcreateerror
	clnt_perrno / clnt_sperrno
	clnt_perror / clnt_sperror
	clntraw_create
	clnttcp_create
	clntudp_create / clntudp_bufcreate
	Chapter 10
	RPC RTL Port Mapper Routines
	Introduction
	Port Mapper Routines
	Port Mapper Arguments

	pmap_getmaps
	pmap_getport
	pmap_rmtcall
	pmap_set
	pmap_unset
	Chapter 11
	RPC RTL Server Routines
	Introduction
	Server Routines

	registerrpc
	svc_destroy
	svc_freeargs
	svc_getargs
	svc_getreqset
	svc_register
	svc_run
	svc_sendreply
	svc_unregister
	svcerr_auth svcerr_decode svcerr_noproc svcerr_noprog svcerr_progvers svcerr_systemerr svcerr_wea...
	svcfd_create
	svcraw_create
	svctcp_create
	svcudp_create / svcudp_bufcreate
	svcudp_enablecache
	xprt_register
	xprt_unregister
	Chapter 12
	RPC RTL XDR Routines
	Introduction
	XDR Routines
	What XDR Routines Do
	When to Call XDR Routines

	Quick Reference

	xdr_accepted_reply
	xdr_array
	xdr_authunix_parms
	xdr_bool
	xdr_bytes
	xdr_callhdr
	xdr_callmsg
	xdr_char
	xdr_double
	Diagnostics

	xdr_enum
	xdr_float
	xdr_free
	xdr_hyper
	xdr_int
	xdr_long
	xdr_netobj
	xdr_opaque
	xdr_opaque_auth
	xdr_pmap
	xdr_pmaplist
	xdr_pointer
	xdr_reference
	xdr_rejected_reply
	xdr_replymsg
	xdr_short
	xdr_string
	xdr_u_char
	xdr_u_hyper
	xdr_u_int
	xdr_u_long
	xdr_u_short
	xdr_union
	xdr_vector
	xdr_void
	xdr_wrapstring
	xdrmem_create
	xdrrec_create
	xdrrec_endofrecord
	xdrrec_eof
	xdrrec_skiprecord
	xdrstdio_create
	Example TCP Client Program
	Example TCP Server Programs
	Standalone TCP Server
	TCP Server as Part of the MULTINET_SERVER

	Example UDP Client Program
	Example UDP Server Programs
	Standalone UDP Server
	UDP Server as Part of the MULTINET_SERVER
	Run-Once UDP Server as Part of the MULTINET_SERVER

	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	X
	Index

